首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The trust region problem, minimization of a quadratic function subject to a spherical trust region constraint, occurs in many optimization algorithms. In a previous paper, the authors introduced an inexpensive approximate solution technique for this problem that involves the solution of a two-dimensional trust region problem. They showed that using this approximation in an unconstrained optimization algorithm leads to the same theoretical global and local convergence properties as are obtained using the exact solution to the trust region problem. This paper reports computational results showing that the two-dimensional minimization approach gives nearly optimal reductions in then-dimension quadratic model over a wide range of test cases. We also show that there is very little difference, in efficiency and reliability, between using the approximate or exact trust region step in solving standard test problems for unconstrained optimization. These results may encourage the application of similar approximate trust region techniques in other contexts.Research supported by ARO contract DAAG 29-84-K-0140, NSF grant DCR-8403483, and NSF cooperative agreement DCR-8420944.  相似文献   

2.

An important part of the well-known iterative closest point algorithm (ICP) is the variational problem. Several variants of the variational problem are known, such as point-to-point, point-to-plane, generalized ICP, and normal ICP (NICP). This paper proposes a closed-form exact solution for orthogonal registration of point clouds based on the generalized point-to-point ICP algorithm. We use points and normal vectors to align 3D point clouds, while the common point-to-point approach uses only the coordinates of points. The paper also presents a closed-form approximate solution to the variational problem of the NICP. In addition, the paper introduces a regularization approach and proposes reliable algorithms for solving variational problems using closed-form solutions. The performance of the algorithms is compared with that of common algorithms for solving variational problems of the ICP algorithm. The proposed paper is significantly extended version of Makovetskii et al. (CCIS 1090, 217–231, 2019).

  相似文献   

3.
This paper studies an extended trust region subproblem (eTRS) in which the trust region intersects the unit ball with a single linear inequality constraint. We present an efficient algorithm to solve the problem using a diagonalization scheme that requires solving a simple convex minimization problem. Attainment of the global optimality conditions is discussed. Our preliminary numerical experiments on several randomly generated test problems show that, the new approach is much faster in finding the global optimal solution than the known semidefinite relaxation approach, especially when solving large scale problems.  相似文献   

4.
In this work, a feasible direction method is proposed for computing the regularized solution of image restoration problems by simply using an estimate of the noise present on the data. The problem is formulated as an optimization problem with one quadratic constraint. The proposed method computes a feasible search direction by inexactly solving a trust region subproblem with the truncated Conjugate Gradient method of Steihaug. The trust region radius is adjusted to maintain feasibility and a line-search globalization strategy is employed. The global convergence of the method is proved. The results of image denoising and deblurring are presented in order to illustrate the effectiveness and efficiency of the proposed method.  相似文献   

5.
一些类型的数学规划问题的全局最优解   总被引:4,自引:0,他引:4  
本文对严格单调函数给出了几个凸化和凹化的方法,利用这些方法可将一个严格单调的规划问题转化为一个等价的标准D.C.规划或凹极小问题.本文还对只有一个严格单调的约束的非单调规划问题给出了目标函数的一个凸化和凹化方法,利用这些方法可将只有一个严格单调约束的非单调规划问题转化为一个等价的凹极小问题.再利用已有的关于D.C.规划和凹极小的算法,可以求得原问题的全局最优解.  相似文献   

6.
一类非线性规划问题的信赖域内点算法   总被引:4,自引:0,他引:4  
本文对约束为线性的一类非线性优化问题提出了一种依赖域内点算法的,其中约束非负性要求一个仿射变换阵实现,其子问题变成了与个带仿射变换的线性等式约束的求解,我们证明了算法的有效性,在一定条件下证明了由算法产生的序列收敛到优化总理2的一阶稳定,点。  相似文献   

7.
The location of path-shaped facilities on trees has been receiving a growing attention in the specialized literature in the recent years. Examples of such facilities include railroad lines, highways and public transit lines. Most of the papers deal with the problem of locating a path on a tree by minimizing either the maximum distance from the vertices of the tree to the facility or of minimizing the sum of the distances from all the vertices of the tree to the path. However, neither of the two above criteria alone capture all essential elements of a location problem. The sum of the distances criterion alone may result in solutions which are unacceptable from the point of view of the service level for the clients who are located far away from the facilities. On the other hand, the criterion of the minimization of the maximum distance, if used alone, may lead to very costly service systems. In the literature, there is just one paper that considers the problem of finding an optimal location of a path on a tree using combinations of the two above criteria, and efficient algorithms are provided. In particular, the cases where one criterion is optimized subject to a restriction on the value of the other are considered and linear time algorithms are presented. However, these problems do not consider any bound on the length or cost of the facility. In this paper we consider the two following problems: find a path which minimizes the sum of the distances such that the maximum distance from the vertices of the tree to the path is bounded by a fixed constant and such that the length of the path is not greater than a fixed value; find a path which minimizes the maximum distance with the sum of the distances being not greater than a fixed value and with bounded length. From an application point of view the constraint on the length of the path may refer to a budget constraint for establishing the facility. The restriction on the length of the path complicates the two problems but for both of them we give O(n log2 n) divide-and-conquer algorithms.  相似文献   

8.
We extend the classical affine scaling interior trust region algorithm for the linear constrained smooth minimization problem to the nonsmooth case where the gradient of objective function is only locally Lipschitzian. We propose and analyze a new affine scaling trust-region method in association with nonmonotonic interior backtracking line search technique for solving the linear constrained LC1 optimization where the second-order derivative of the objective function is explicitly required to be locally Lipschitzian. The general trust region subproblem in the proposed algorithm is defined by minimizing an augmented affine scaling quadratic model which requires both first and second order information of the objective function subject only to an affine scaling ellipsoidal constraint in a null subspace of the augmented equality constraints. The global convergence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions where twice smoothness of the objective function is not required. Applications of the algorithm to some nonsmooth optimization problems are discussed.  相似文献   

9.
In this paper, an extremal eigenvalue problem to the Sturm-Liouville equations with discontinuous coefficients and volume constraint is investigated. Liouville transformation is applied to change the problem into an equivalent minimization problem. Finite element method is proposed and the convergence for the finite element solution is established. A monotonic decreasing algorithm is presented to solve the extremal eigenvalue problem. A global convergence for the algorithm in the continuous case is proved. A few numerical results are given to depict the efficiency of the method.  相似文献   

10.
Modern methods construct a matched sample by minimizing the total cost of a flow in a network, finding a pairing of treated and control individuals that minimizes the sum of within-pair covariate distances subject to constraints that ensure distributions of covariates are balanced. In aggregate, these methods work well; however, they can exhibit a lack of interest in a small number of pairs with large covariate distances. Here, a new method is proposed for imposing a minimax constraint on a minimum total distance matching. Such a match minimizes the total within-pair distance subject to various constraints including the constraint that the maximum pair difference is as small as possible. In an example with 1391 matched pairs, this constraint eliminates dozens of pairs with moderately large differences in age, but otherwise exhibits the same excellent covariate balance found without this additional constraint. A minimax constraint eliminates edges in the network, and can improve the worst-case time bound for the performance of the minimum cost flow algorithm, that is, a better match from a practical perspective may take less time to construct. The technique adapts ideas for a different problem, the bottleneck assignment problem, whose sole objective is to minimize the maximum within-pair difference; however, here, that objective becomes a constraint on the minimum cost flow problem. The method generalizes. Rather than constrain the maximum distance, it can constrain an order statistic. Alternatively, the method can minimize the maximum difference in propensity scores, and subject to doing that, minimize the maximum robust Mahalanobis distance. An example from labor economics is used to illustrate. Supplementary materials for this article are available online.  相似文献   

11.
A method for finding the optimal distance function for the classification problem with two classes in which the objects are specified by vectors of their ordinal features is proposed. An optimal distance function is sought by the minimization of the weighted difference of the average intraclass and interclass distances. It is assumed that a specific distance function is given for each feature, which is defined on the Cartesian product of the set of integer numbers in the range from 0 to N − 1 and takes values from 0 to M. Distance functions satisfy modified metric properties. The number of admissible distance functions is calculated, which enables one to significantly reduce the complexity of the problem. To verify the appropriateness of metric optimization and to perform experiments, the nearest neighbor algorithm is used.  相似文献   

12.
On a subproblem of trust region algorithms for constrained optimization   总被引:8,自引:0,他引:8  
We study a subproblem that arises in some trust region algorithms for equality constrained optimization. It is the minimization of a general quadratic function with two special quadratic constraints. Properties of such subproblems are given. It is proved that the Hessian of the Lagrangian has at most one negative eigenvalue, and an example is presented to show that the Hessian may have a negative eigenvalue when one constraint is inactive at the solution.Research supported by a Research Fellowship of Fitzwilliam College, Cambridge, and by a research grant from the Chinese Academy of Sciences.  相似文献   

13.
A trust region and affine scaling interior point method (TRAM) is proposed for a general nonlinear minimization with linear inequality constraints [8]. In the proposed approach, a Newton step is derived from the complementarity conditions. Based on this Newton step, a trust region subproblem is formed, and the original objective function is monotonically decreased. Explicit sufficient decrease conditions are proposed for satisfying the first order and second order necessary conditions.?The objective of this paper is to establish global and local convergence properties of the proposed trust region and affine scaling interior point method. It is shown that the proposed explicit decrease conditions are sufficient for satisfy complementarity, dual feasibility and second order necessary conditions respectively. It is also established that a trust region solution is asymptotically in the interior of the proposed trust region subproblem and a properly damped trust region step can achieve quadratic convergence. Received: January 29, 1999 / Accepted: November 22, 1999?Published online February 23, 2000  相似文献   

14.
We investigate the relation between two aspects of round robin tournament scheduling problems: breaks and distances. The distance minimization problem and the breaks maximization problem are equivalent when the distance between every pair of teams is equal to 1. We show how to construct schedules with a maximum number of breaks for some tournament types. The connection between breaks maximization and distance minimization is used to derive lower bounds to the mirrored traveling tournament problem and to prove the optimality of solutions found by a heuristic for the latter.  相似文献   

15.
§1 IntroductionIn this paper we analyze an interior point scaling projected reduced Hessian methodwith trust region strategy for solving the nonlinear equality constrained optimizationproblem with nonnegative constraints on variables:min f(x)s.t. c(x) =0 (1.1)x≥0where f∶Rn→R is the smooth nonlinear function,notnecessarily convex and c(x)∶Rn→Rm(m≤n) is the vector nonlinear function.There are quite a few articles proposing localsequential quadratic programming reduced Hessian methods…  相似文献   

16.
AbstractAn interior trust-region-based algorithm for linearly constrained minimization problems is proposed and analyzed. This algorithm is similar to trust region algorithms for unconstrained minimization: a trust region subproblem on a subspace is solved in each iteration. We establish that the proposed algorithm has convergence properties analogous to those of the trust region algorithms for unconstrained minimization. Namely, every limit point of the generated sequence satisfies the Krush-Kuhn-Tucker (KKT) conditions and at least one limit point satisfies second order necessary optimality conditions. In addition, if one limit point is a strong local minimizer and the Hessian is Lipschitz continuous in a neighborhood of that point, then the generated sequence converges globally to that point in the rate of at least 2-step quadratic. We are mainly concerned with the theoretical properties of the algorithm in this paper. Implementation issues and adaptation to large-scale problems will be addressed in a  相似文献   

17.
首先将一个具有多个约束的规划问题转化为一个只有一个约束的规划问题,然后通过利用这个单约束的规划问题,对原来的多约束规划问题提出了一些凸化、凹化的方法,这样这些多约束的规划问题可以被转化为一些凹规划、反凸规划问题.最后,还证明了得到的凹规划和反凸规划的全局最优解就是原问题的近似全局最优解.  相似文献   

18.
In this paper, we study a few challenging theoretical and numerical issues on the well known trust region policy optimization for deep reinforcement learning. The goal is to find a policy that maximizes the total expected reward when the agent acts according to the policy. The trust region subproblem is constructed with a surrogate function coherent to the total expected reward and a general distance constraint around the latest policy. We solve the subproblem using a reconditioned stochastic gradient method with a line search scheme to ensure that each step promotes the model function and stays in the trust region. To overcome the bias caused by sampling to the function estimations under the random settings, we add the empirical standard deviation of the total expected reward to the predicted increase in a ratio in order to update the trust region radius and decide whether the trial point is accepted. Moreover, for a Gaussian policy which is commonly used for continuous action space, the maximization with respect to the mean and covariance is performed separately to control the entropy loss. Our theoretical analysis shows that the deterministic version of the proposed algorithm tends to generate a monotonic improvement of the total expected reward and the global convergence is guaranteed under moderate assumptions. Comparisons with the state-of-the-art methods demonstrate the effectiveness and robustness of our method over robotic controls and game playings from OpenAI Gym.  相似文献   

19.
We introduce a trust region algorithm for minimization of nonsmooth functions with linear constraints. At each iteration, the objective function is approximated by a model function that satisfies a set of assumptions stated recently by Qi and Sun in the context of unconstrained nonsmooth optimization. The trust region iteration begins with the resolution of an “easy problem”, as in recent works of Martínez and Santos and Friedlander, Martínez and Santos, for smooth constrained optimization. In practical implementations we use the infinity norm for defining the trust region, which fits well with the domain of the problem. We prove global convergence and report numerical experiments related to a parameter estimation problem. Supported by FAPESP (Grant 90/3724-6), FINEP and FAEP-UNICAMP. Supported by FAPESP (Grant 90/3724-6 and grant 93/1515-9).  相似文献   

20.
In this paper we solve large scale ill-posed problems, particularly the image restoration problem in atmospheric imaging sciences, by a trust region-CG algorithm. Image restoration involves the removal or minimization of degradation (blur, clutter, noise, etc.) in an image using a priori knowledge about the degradation phenomena. Our basic technique is the so-called trust region method, while the subproblem is solved by the truncated conjugate gradient method, which has been well developed for well-posed problems. The trust region method, due to its robustness in global convergence, seems to be a promising way to deal with ill-posed problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号