共查询到20条相似文献,搜索用时 15 毫秒
1.
A high spectral resolution, 2D nanohole-array-based surface plasmon resonance sensor that operates at normal or near normal incidence--facilitating high spatial resolution imaging--is presented. The angular and spectral transmittance of the structure is modified from a Fano type to a pure Lorentzian line shape with a parallel and orthogonal polarizer-analyzer pair. This change leads to a linewidth narrowing that maximizes the sensor resolution, which we show to be of O(10(-5)) refractive index units (RIU). We estimate the potential of this system of O(10(-6)) RIU under optimal conditions. 相似文献
2.
为了改进SPR传感器灵敏度低、稳定性差、测量范围窄等问题,基于光的衰减全反射理论设计了一种SPR传感装置。利用FDTD计算机软件分析得到:设计的结构分子层和金属薄膜之间的界面磁场强度得到极大地提高,测量精度有了显著的改进;很大一部分倏逝场能量集中在表面等离子共振区,倏逝波的强度非常强。 相似文献
3.
Kumar Yagyesh Mishra Rishi Panwar Ekta Kaur Jaswinder Panwar Ravi 《Optical and Quantum Electronics》2019,51(10):1-11
Optical and Quantum Electronics - We have investigated the potential of using the E-field induced birefringence for improving the sensitivity of uniaxial anisotropic slab waveguide sensor based on... 相似文献
4.
Modeling of a miniaturized fiber optic sensor based on surface plasmon resonance utilizing a broad band diffuse source is
presented. Attenuated total internal reflection with Kretschmann configuration is the basis of the theoretical model. For
simulation both meridional and skew rays are considered. The performance of the sensor is evaluated in terms of sensitivity,
detection accuracy and signal to noise ratio. Effects of the numerical aperture of the fiber, core diameter and length of
the sensing region on the performance parameters of the sensor are studied. The results are obtained for gold and silver metallic
layer on the core of the fiber. The theoretical results obtained are compared with SPR based fiber optic sensor utilizing
focused beam on the end face of the fiber from a collimated source. The advantages of using broadband LED (diffuse source)
source for launching light in the fiber are the miniaturization, compactness and low cost of the sensor. 相似文献
5.
6.
7.
8.
光纤表面等离子体共振传感器在高灵敏度传感和在线实时监测等领域具有重要意义. 设计了一种六重准晶体结构环形通道光纤表面等离子体共振传感器, 基于有限元法对该传感器的传感特性进行了数值模拟. 研究了光纤各结构参量对传感器特性的影响规律. 研究结果表明: 待测液折射率的有效监测范围为1.25–1.331, 最高灵敏度可达26400 nm·RIU-1, 传感器具有损耗谱杂峰少、探测范围广、灵敏度高、设计灵活性高和光路可弯曲等特点, 在生化检测、公共安全、环境污染监测以及高灵敏度传感等领域具有广泛的应用前景. 相似文献
9.
This paper reports on a novel design of a fiber optic surface plasmon resonance (SPR) sensor based on nanoparticle metal film. The performance of the proposed sensor in terms of its signal-to-noise ratio (SNR) and sensitivity under different conditions related to the film with spherical gold nanoparticles embedded in a host material is theoretically analyzed. In particular, the effect of the parameters such as gold particle size, film thickness, and refractive index of host material is studied and the possible explanation, whenever required, is given. The numerical results presented in this paper leads to fulfill the requirement of significant optimization of the important design parameters to achieve a high SNR and sensitivity of a fiber optic SPR sensor with nanoparticle films. 相似文献
10.
Hydrogen is being seen as a potentially inexhaustible, clean power supply. Direct hydrogen production and storage techniques that would eliminate carbon by-products and compete in cost are accelerated in R&D due to the recent sharp price increase of crude oil. But hydrogen is also linked with certain risks of use, namely the danger of explosions if mixed with air due to the very low energy needed for ignition and the possibility to diminish the ozone layer by undetected leaks. To reduce those risks efficient, sensitive and very early warning systems are needed. This paper will contribute to this challenge in adopting the optical method of Surface-Plasmon-Resonance (SPR) Spectroscopy for a sensitive detection of hydrogen concentrations well below the lower explosion limit. The technique of SPR performed with fiberoptics would in principle allow a remote control without any electrical contacts in the potential explosion zone. A thin palladium metal layer has been studied as sensing element. A simulation programme to find an optimum sensor design lead to the conclusion that an Otto-configuration is more advantageous under intended “real world” measurement conditions than a Kretschmann configuration. This could be experimentally verified. The very small air gap in the Otto-configuration could be successfully replaced by a several hundred nm thick intermediate layer of MgF2 or SiO2 to ease the fabrication of hydrogen sensor-chips based on glass slide substrates. It could be demonstrated that by a separate detection of the TM- and TE-polarized light fractions the TE-polarized beam could be used as a reference signal, since the TE-part does not excite surface plasmons and thus is not influenced by the presence of hydrogen. Choosing the measured TM/TE intensity ratio as the analytical signal a sensor-chip made from a BK7 glass slide with a 425 nm thick intermediate layer of SiO2 and a sensing layer of 50 nm Pd on top allowed a drift-free, reliable and reversible determination of hydrogen concentrations up to about 10 vol.% in dry or humid air with a detection limit of 0.04 vol.% with response times of around 2 min. 相似文献
11.
提出了一种契形端面结构的光纤表面等离子体共振(SPR)传感器激励模型. 采用时域有限差分法对契形SPR波导的共振模型进行数值模拟, 通过在光纤出射端抛磨契形角度并进行敏感膜修饰, 制出具有契形端面结构的类Kretschmann微棱镜式光纤SPR传感器, 实现激发SPR的光波调制.结果表明, 在1.3330–1.4215折射率范围内, 制备的契形光纤SPR传感器相对于常规光纤SPR传感器, 其平均灵敏度提高了近1–6倍, 1倍和6倍分别出现在小角度结构(15° 契形) 传感器和大角度结构(60°契形) 传感器, 且仍保持 10-5 等级的分辨率. 该类型结构的传感器具有契形端面激励模式, 设计灵活性高、制备工艺简单、可微量检测样本等优点, 能够很好地适应于不同环境和测量条件的实际生化检测、环境监测需求.
关键词:
光纤传感器
表面等离子体共振
契形端面结构
折射率灵敏度 相似文献
12.
结合物理光学原理和表面等离子体共振(SPR)角度传感器,提出了可以突破衍射极限的纳米间距检测方法。在理论上建立起纳米间距和位相改变量之间的函数关系,借助于SPR角度传感器的高灵敏性,提出通过检测出射光束振动方向的p分量和s分量的位相差值来实现纳米间距的实时检测。模拟结果显示:纳米间距改变量从-0.5~0.5μm变化时,位相改变量可实现-150°~150°的变化,检测灵敏度〉1 nm。该检测方法能够实现10 nm以下间距的灵敏检测,且具有结构简单,易于操作,实时检测的特点。 相似文献
13.
A novel analysis based on surface plasmon resonance (SPR) with a side-polished multimode fiber and a white-light (halogen light) source is presented. The sensing system is a multimode optical fiber in which half of the core has been polished away and a 40 nm gold layer is deposited on to the polished surface by dc sputter. The SPR dip in the optical spectrum is investigated with an optical spectrum analyzer (OSA). In our SPR fiber sensor, the use of liquids with different refractive indices leads to a shift in the spectral dip in the SPR curve. The cross point (CP) of the two SPR spectra obtained from the refractive-index liquid and the deionized water measurements was observed with the OSA. The CP is shifted sensitively in wavelength from 630 to 1300 nm relative to a change in the refractive index of the liquid from 1.34 to 1.46. High sensitivities of 1.9 x 10(-6) refractive-index units (RIUs) in the range of the refractive index of the liquid from 1.40 to 1.44 of 5.7 x 10(-7) RIUs above the value of 1.44 are proposed and demonstrated in our novel SPR analysis. 相似文献
14.
15.
16.
A highly-sensitive grating-based surface plasmon resonance (SPR) sensor is proposed. The angular interrogation method has been used to study the performance of the sensor, and high sensitivity is obtained if the ?1st diffraction order is used to excite surface plasmon (SP). The sensitivity as well as the width of the SPR curves and reflective amplitude is considered for designing the sensor. Compared with the conventional gold (Au)-based or silver (Ag)-based SPR sensor, it is found that the aluminum (Al)-based sensor has the best performance. The oxidation problem of an Al-based SPR sensor has been addressed by coating it with an ultrathin gold film on the surface. Numerical simulations based on rigorous coupled wave analysis (RCWA) show that the sensitivity of the optimized sensor is 245°/RIU (degree per refractive index unit). 相似文献
17.
An extremely sensitive surface plasmon resonance based fiber optic sensor with indium nitride (InN) layer coated on the core of the optical fiber is theoretically analyzed. The proposed sensor exhibits high sensitivity in the near infrared region of spectrum. The optimized value of thickness of InN layer is found to be 70 nm. Possessing high sensitivity of 4493 nm/RIU, the 70 nm thick InN layer based fiber optic SPR sensor illustrates good sensing behavior. 相似文献
18.
19.
According to the resonance transition between propagating surface plasmon and localized surface plasmon, we demonstrate a design of beam splitter that can split terahertz wave beams in a relatively broad frequency range. The transmission properties of the beam splitter are analyzed utilizing the finite element method. The resonance transition between two kinds of plasmons can be explained by a model of coherent electron cloud displacement. 相似文献
20.
For breaking through the sensitivity limitation of conventional surface plasmon resonance (SPR) biosensors, novel highly sensitive SPR biosensors with Au nanoparticles and nanogratings enhancement have been proposed recently.But in practice, these structures have obvious disadvantages.In this study, a nanohole based sensitivity enhancement SPR biosensor is proposed and the influence of different structural parameters on the performance is investigated by using rigorous coupled wave analysis (RCWA).Electromagnetic field distributions around the nanohole are also given out to directly explain the performance difference for various structural parameters.The results indicate that significant sensitivity increase is associated with localized surface plasmons (LSPs) excitation mediated by nanoholes.Except to outcome the weakness of other LSP based biosensors, larger resonance angle shift, reflectance amplitude, and sharper SPR curves' width are obtained simultaneously under optimized structural parameters. 相似文献