首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quasi-classical trajectory method (QCT) running on the 1A′ and 1A″ potential energy surfaces (PESs) given by Dobbyn and Knowles [A.J. Dobbyn, P.J. Knowles, Mol. Phys. 91 (1997) 1107] has been employed to study the dynamical stereochemistry of the chemical reaction O(1D) + D2 → OD + D, especially the vector correlations between products and reagents. The results indicate that product rotational angular momentum j′ is not only aligned, but also oriented along the direction perpendicular to the scattering plane on both PESs, with different rotational polarization behaviors of product OD for the two PESs and for different collision energies. Calculations show that the alignment effect of products become weaker with an increase of the collision energy on the 1A′ PES but is not sensitive to the collision energy on the 1A″ PES. When the collision energy increases, the product OD mainly tends to the forward scattering on the 1A′ PES and displays a switch from the backward scattering to the forward one on the 1A″ PES. These differences are probably attributed to the different characteristics of the two PESs.  相似文献   

2.
The ground- and excited-state structures for a series of Os(II) diimine complexes [Os(NN)(CO)2I2] (NN = 2,2′-bipyridine (bpy) (1), 4,4′-di-tert-butyl-2,2′-bipyridine (dbubpy) (2), and 4,4′-dichlorine-2,2′-bipyridine (dclbpy) (3)) were optimized by the MP2 and CIS methods, respectively. The spectroscopic properties in dichloromethane solution were predicted at the time-dependent density functional theory (TD-DFT, B3LYP) level associated with the PCM solvent effect model. It was shown that the lowest-energy absorptions at 488, 469 and 539 nm for 13, respectively, were attributed to the admixture of the [dxy (Os) → π*(bpy)] (metal-to-ligand charge transfer, MLCT) and [p(I) → π*(bpy)] (interligand charge transfer, LLCT) transitions; their lowest-energy phosphorescent emissions at 610, 537 and 687 nm also have the 3MLCT/3LLCT transition characters. These results agree well with the experimental reports. The present investigation revealed that the variation of the substituents from H → t-Bu → Cl on the bipyridine ligand changes the emission energies by altering the energy level of HOMO and LUMO but does not change the transition natures.  相似文献   

3.
Particulate composites of NiFe2O4 (NFO) and Pb0.93La0.07 (Zr0.60Ti0.40) O3 (PLZT) were synthesized by solid-state reaction technique. Structure and surface morphological studies were carried out using X-ray diffraction and scanning electron microscopy techniques, respectively. Frequency dependent variation of dielectric constant (), loss tangent (tan δ) and ac resistivity for (x) NFO + (1−x) PLZT composites in the range 100 Hz–5 MHz at room temperature were studied. The temperature dependence of dielectric constant (′), loss tangent (tan δ) was studied in wide temperature range of measurement at fixed frequencies. Also DC resistivity measurements were carried out in the temperature range of 300 K–923 K. Structural, dielectric and electrical properties show notable change due to presence of magnetostrictive NFO phase along with PLZT.  相似文献   

4.
We report quasiclassical trajectory studies of the OH + O → H + O2 reaction using a recently developed ab initio potential energy surface for the ground electronic state of HO2. The total reaction probability is in good agreement with the quantum result. Integral cross sections show no energy threshold and decrease as the collision energy increases. Rate constants have been calculated in the (1–500 K) temperature range. They exhibit a negative temperature dependence for temperatures above 50 K, and the thermal rate constant is in quantitative agreement with the most recent experimental data. The reactivity is slightly enhanced by rotational excitation of OH.  相似文献   

5.
The gas-phase electronic spectrum of cyclic-B3 (D3h) radical has been remeasured in a supersonic molecular beam using a mass-selective resonant 2-color 2-photon technique, leading to a revision of previously reported spectroscopic constants. The species was prepared by ablation of a boron nitride rod in the presence of helium. Ab intio calculations on the geometries and vertical electronic excitation energies, as well as mass identification, indicate that the detected band, centered at 21848.77(2) cm−1, is the origin of the cyclic-11B3 system. A spectral fit yields the rotational constants as B″ = 1.2246(45) and C″ = 0.62131(72) cm−1 in the ground state, and B′ = 1.1914(44) and C′ = 0.61173(69) cm−1 in the excited 2 2E′ state.  相似文献   

6.
Three new hybrid crystals of 2-aminophenol-HClO4 (2-AP-HClO4, 1), 3-aminophenol-HClO4 (3-AP-HClO4, 2) and 4-aminophenol-HClO4 (4-AP-HClO4, 3) were obtained and their crystal structures determined. The 1 crystallises in centrosymmetric space group C2/c of monoclinic system while the other two (2 and 3) crystallise in the non-centro symmetric space group P21 and P212121, respectively. The oppositely charged units of the crystals, i.e. positively charged 2-APH+, 3-APH+ and 4-APH+ and ClO4, interact via weak N+–HO and O–HO hydrogen bonds forming 3D-supramolecular network. Relative to KDP the SHG efficiencies are 0.62 for 2 and 0.33 for 3, measured at 1064 nm using the Kurtz–Perry method.  相似文献   

7.
Binuclear cycloheptatrienylchromium carbonyls of the type (C7H7)2Cr2(CO)n (n = 6, 5, 4, 3, 2, 1, 0) have been investigated by density functional theory. Energetically competitive structures with fully bonded heptahapto η7-C7H7 rings are not found for (C7H7)2Cr2(CO)n structures having two or more carbonyl groups. This result stands in contrast to the related (CnHn)2M2(CO)n (M = Mn, n = 6; M = Fe, n = 5; M = Co, n = 4) systems. Most of the predicted (C7H7)2Cr2(CO)n structures have bent trihapto or pentahapto C7H7 rings and CrCr distances in the range 2.4–2.5 Å suggesting formal triple bonds. In some cases rearrangement of the heptagonal C7H7 ring to a tridentate cyclopropyldivinyl or tridentate bis(carbene)alkyl ligand is observed. In addition structures with CO insertion into the C7H7–Cr bond are predicted for (C7H7)2Cr2(CO)n (n = 6, 4, 2). The global minima found for the (C7H7)2Cr2(CO)n derivatives for n = 6, 5, and 4 are (η5-C7H7)(OC)2CrCr(CO)41-C7H7), (η3-C7H7)(OC)2CrCr(CO)32,1- C7H7), and (η5-C7H7)2Cr2(CO)4, respectively. The global minima for (C7H7)2Cr2(CO)n (n = 3, 2) have rearranged C7H7 groups. Singlet and triplet structures with heptahapto η7-C7H7 rings are found for the dimetallocenes (η7-C7H7)2Cr2(CO) and (η7-C7H7)2Cr2, with the singlet structures being of much lower energies in both cases.  相似文献   

8.
[cis-Co(en)2(N3)2]C7H3ClNO4·1.25H2O (Cocnb) was synthesised and detailed packing analyses were undertaken to delineate the topological complementarity of [cis-Co(en)2(N3)2]+ and a 2-chloro-4-nitro benzoate anion (cnb) for second sphere coordination in the crystal lattice. The complex was completely characterised by elemental analyses, spectroscopic studies (IR, UV/visible, 1H and 13C NMR). The compound crystallizes in the monoclinic (space group C2/c) with a = 21.9843(18), b = 8.7959(7), c = 23.0121(18) Å, β = 116.426(1)°, V = 3984.9(6) Å3, and Z = 8. In the crystal lattice, discrete ions of [cis-Co(en)2(N3)2]+ and cnb are arranged in A–B–A–B pattern (in both a and c directions of the lattice) forming columns of anions and cations. The anionic columns are π stacked and are involved in extensive hydrogen bonding interaction. It appears that the topological feature of [cis-Co(en)2(N3)2]+ is conducive for generating second sphere interactions with aromatic carboxylates. This strategy may be used as a viable method for the capture of aromatic carboxylate anions.  相似文献   

9.
Combining a temperature variable 22-pole ion trap with a cold effusive beam of neutrals, rate coefficients k(T) have been measured for reactions of CO2+ ions with H, H2 and deuterated analogues. The neutral beam which is cooled in an accommodator to TACC, penetrates the trapped ion cloud with a well-characterized velocity distribution. The temperature of the ions, T22PT, has been set to values between 15 and 300 K. Thermalization is accelerated by using helium buffer gas. For reference, some experiments have been performed with thermal target gas. For this purpose hydrogen is leaked directly into the box surrounding the trap. While collisions of CO2+ with H2 lead exclusively to the protonated product HCO2+, collisions with H atoms form mainly HCO+. The electron transfer channel H+ + CO2 could not be detected (<20%). Equivalent studies have been performed for deuterium. The rate coefficients for reactions with atoms are rather small. Within our relative errors of less than 15%, they do not depend on the temperature of the CO2+ ions nor on the velocity of the atoms (k(T) lays between 4.5 and 4.7 × 10−10 cm3 s−1 with H as target, and 2.2 × 10−10 cm3 s−1 with D). For collisions with molecules, the reactivity increases significantly with falling temperature, reaching the Langevin values at 15 K. These results are reported as k = α (T/300 K)β with α = 9.5 × 10−10 cm3 s−1 and β = −0.15 for H2 and α = 4.9 × 10−10 cm3 s−1 and β = −0.30 for D2.  相似文献   

10.
The β, β′, γ and α phases of LiFeO2, synthesized as powders, were annealed at different temperatures and characterized by X-ray measurements. The β′ and γ modifications were also studied by time-of-flight neutron diffraction (ISIS Facility, UK). The structure of the β′ phase was refined in the monoclinic C2/c space group (a=8.566(1), b=11.574(2), c=5.1970(5) Å, β=146.064(5)°) to wRp=0.071–0.080 (data from four counter banks). Fe and Li atoms are ordered over two of the four independent sites, and partially disordered over the other two. The ordered Li has a distorted tetrahedral coordination. The γ structure was refined at RT (a=4.047(1), c=8.746(2) Å) and at 570 °C (a=4.082(3), c=8.822(6) Å) in the I41/amd symmetry, showing full order with Li in octahedral coordination at RT, and in a split-atom configuration at high temperature. On annealing, the β′ polymorph was found to transform to γ at 550 °C, thus suggesting that it is a metastable phase. Electrostatics is discussed as the driving force for the αβ′→γ ordering process of LiFeO2.  相似文献   

11.
The electrochemical reduction of the black dye photosensitizer [(H3-tctpy)RuII(NCS)3] (H3-tctpy=2,2′:6′,2′′-terpyridine-4,4′,4′′-tricarboxylic acid) used in photovoltaic cells has been found to be a complex process when studied in dimethylformamide. At low temperatures, fast scan rates and at a glassy carbon electrode, the chemically reversible ligand based one-electron reduction process [(H3-tctpy)Ru(NCS)3]+e[(H3-tctpy√)Ru(NCS)3]2− is detected. This process has a reversible half-wave potential (Er1/2) of −1585±20 mV versus Fc/Fc+ at 25°C. Under other conditions, a deprotonation reaction occurs upon reduction, which produces [(H3−x-tctpyx)Ru(NCS)3](1+x)− and hydrogen gas. Mechanistic pathways giving rise to the final products are discussed. The Er1/2-value for the ligand based reductions of the deprotonated complex is 0.70 V more negative than for [(H3-tctpy)Ru(NCS)3]. Consequently, data obtained from molecular orbital calculations are consistent with the reaction [(H3-tctpy)Ru(NCS)3]+e→[(H2-tctpy)Ru(NCS)3]2−+1/2H2 yielding the monodeprotonated complex as the major product obtained after electrochemical reduction of [(H3-tctpy)Ru(NCS)3]. The Er1/2-values for the metal based RuII/III process differ by 0.30 V when data obtained for the protonated and deprotonated forms of the black dye are compared. Electronic spectra obtained during the course of experiments in an optically transparent thin layer electrolysis configuration are consistent with the overall reaction scheme proposed on the basis of voltammetric measurements and molecular orbital calculations. Reduction studies on the free ligand, H3-tcpy, are consistent with results obtained with [(H3-tctpy)Ru(NCS)3].  相似文献   

12.
Conductivities of some tetraalkylammonium halides, viz. tetrapentylammonium chloride (Pen4NCl), tetrahexylammonium chloride (Hex4NCl), tetraheptylammonium chloride (Hep4NCl), and tetraoctylammonium chloride (Oct4NCl) were measured at 298.15 K in THF + CCl4 mixtures with 40, 60 and 80 mass% of THF. A minimum in the conductometric curves (molar conductance, Λ vs. square root of concentration, √c) was observed at concentrations which is dependent both on the salt and the solvent. The observed molar conductivities were explained by the formation of ion-pairs (M+ + X ↔ MX, KP) and triple-ions (2M+ + X ↔ M2X+; M+ + 2X ↔ MX2, KT). A linear relationship between the triple-ion formation constants [log(KT/KP)] and the salt concentrations at the minimum conductivity (log Cmin) was given for all salts in THF + CCl4 mixtures. The formation of triple-ions might be attributed to the ion sizes in solutions in which coulombic interactions and covalent bonding forces act as the main forces between the ions (R4N+X).  相似文献   

13.
Mixed-chelate complexes of ruthenium have been synthesized using tridentate Schiff-base ligands (TDLs) derived from condensation of 2-aminophenol or 2-aminobenzoic acid with aldehydes (salicyldehyde, 2-pyridinecarboxaldehyde), and tmeda (tetramethylethylenediamine). [RuIII(hpsd)(tmeda)(H2O)]+ (1), [RuIII(hppc)(tmeda)(H2O)]2+ (2), [RuIII(cpsd)(tmeda)(H2O)]+ (3) and [RuIII(cppc)(tmeda)(H2O)]2+ (4) complexes (where hpsd2− = N-(hydroxyphenyl)salicylaldiminato); hppc = N-(2-hydroxyphenylpyridine-2-carboxaldiminato); cpsd2− = (N-(2-carboxyphenyl)salicylaldiminato); cppc = N-2-carboxyphenylpyridine-2-carboxaldiminato) were characterized by microanalysis, spectral (IR and UV–vis), conductance, magnetic moment and electrochemical studies. Complexes 14 catalyzed the epoxidation of cyclohexene, styrene, 4-chlorostyrene, 4-methylstyrene, 4-methoxystyrene, 4-nitrostyrene, cis- and trans-stilbenes effectively at ambient temperature using tert-butylhydroperoxide (t-BuOOH) as terminal oxidant. On the basis of Hammett correlation (log krel vs. σ+) and product analysis, a mechanism involving intermediacy of a [Ru–O–OBut] radicaloid species is proposed for the catalytic epoxidation process.  相似文献   

14.
We report the basis set dependencies and the basis set superposition errors for the hydrated complexes of K+ and Na+ ions in relation to the recent studies of the KcsA potassium channel. The basis set superposition errors are estimated by the geometry optimizations at the counterpoise-corrected B3LYP level. The counterpoise optimizations alter the hydration distances by about 0.02–0.03 Å. The enthalpies and free energies for K+ + n(H2O) → [K(H2O)n]+ and Na+ + n(H2O) → [Na(H2O)n]+ (n = 1–6) are compared between the theoretical and experimental values. The results show that the addition of diffuse functions to K, Na, and O species are effective. However, it is also found that the counterpoise corrections using diffuse functions work so as to underestimate the free energies for the complexes with increasing the hydration number. The stabilization energies in aqueous solution are larger for a Na+ ion than for a K+ ion, suggesting the contributions of their dehydration processes to the ion selectivity of the KcsA potassium channel. The changes in coordination distance between the isolated [K(H2O)8]+ and the [K(H2O)8]+ in the KcsA potassium channel indicate the importance of hydrogen bondings between the first hydration shell and the outer hydration shells.  相似文献   

15.
The kinetics of the CCl2 + Br2 and CCl2 + NO2 reactions have been studied at temperatures between 266 and 365 K using laser photolysis/photoionization mass spectrometry. Dichloromethylene biradicals were produced by the pulsed laser photolysis of CCl4. The bimolecular rate coefficients of the CCl2 + Br2 reaction can be described by the Arrhenius expression k1 = (7.05 ± 1.75) × 10−12 exp[(3.52 ± 0.63) kJ mol−1/RT] cm3 molecule−1 s−1. CCl2Br was observed as a primary product of this reaction. Interestingly, the bimolecular rate coefficients of the CCl2 + NO2 reaction were observed to depend weakly on the bath gas density and to possess a negative temperature dependence.  相似文献   

16.
The preparation, crystal structure and magnetic properties of a new oxalate-containing copper(II) chain of formula {[(CH3)4N]2[Cu(C2O4)2] · H2O}n (1) [(CH3)4N+ = tetramethylammonium cation] are reported. The structure of 1 consists of anionic oxalate-bridged copper(II) chains, tetramethylammoniun cations and crystallization water molecules. Each copper(II) ion in 1 is surrounded by three oxalate ligands, one being bidentate and the other two exhibiting bis-bidenate coordination modes. Although all the tris-chelated copper(II) units from a given chain exhibit the same helicity, adjacent chains have opposite helicities and then an achiral structure results. Variable-temperature magnetic susceptibility measurements of 1 show the occurrence of a weak ferromagnetic interaction through the oxalate bridge [J = +1.14(1) cm−1, the Hamiltonian being defined as H = –JnmSi · Sj]. This value is analyzed and discussed in the light of available magneto-structural data for oxalate-bridged copper(II) complexes with the same out-of-plane exchange pathway.  相似文献   

17.
The reaction between the magnesium β-diketonate complex Mg(tmhd)2(H2O)2 and 1 equiv. of N,N,N′,N′-tetramethylethylenediamine (tmeda = Me2NCH2CH2NMe2) in hexane at room temperature yielded Mg(tmhd)2(tmeda). The standard enthalpy of sublimation (83.2 ± 2.3 kJ mol−1) and entropy of sublimation (263 ± 6.3 J mol−1 K−1) of Mg(tmhd)2(tmeda) were obtained from the temperature dependence vapour pressure, determined by adopting a horizontal dual arm single furnace thermogravimetric analyser as a transpiration apparatus. From the observed melting point depression DTA, the standard enthalpy of fusion (58.3 ± 5.2 kJ mol−1) was evaluated, using the ideal eutectic behaviour of Mg(tmhd)2(tmeda) as a solvent with bis(2,4-pentanedionato)magnesium(II), Mg(acac)2 as a non-volatile solute.  相似文献   

18.
Ionic fragmentation following the inner-shell photoexcitation of [(CH3)2CO]Arn heteroclusters was investigated in the Ar L23- and O K-edge regions. A partial ion yield (PIY) measurement revealed that and various acetone fragments (, , , , and CHmCO+) were produced following the Ar L23-shell excitation. In the O K-edge region, the PIY of O+ exhibited a sharp resonance peak at the O 1s → π*(CO) resonance excitation. The selective O+ formation was interpreted as the suppression of statistical fragmentation, which was dominant in isolated acetone, owing to the dissipation of excess energy into Ar clusters.  相似文献   

19.
The electronic and geometric structures and the dissociation energies of the isolated molecule of heme dimer (heme)2 = (FeC34H32O4N4)2 and its ion (heme) 2 + = (FeC34H32O4N4) 2 + in the states with different multiplicities have been calculated by the density functional theory B3LYP method with the Gen-1 = 6-31G*(Fe) + 6-31G(C,H,N,O) and Gen-2 = 6-311++G*(Fe) + 6-31G*(C,H,N,O) basis sets. The computation results are compared with the analogous calculated data on monomeric heme and hemin+, as well as the previously considered dimeric ferriporphyrin X molecule and ion FeC34H31O4N4) 2 0, + . In the heme dimer cation (heme) 2 + , which is identified in mass spectra, the rings are linked with each other by a pair of Fe carbonyl bridges Fe⋯Ob = C(OH) and a pair of hydrogen bridges OHb⋯N. According to the calculations, the most favorable state for (heme) 2 + is the sextet in which five unpaired electrons are approximately uniformly distributed over the metal atoms, whereas the states with higher multiplicities 8 and 10 are, respectively, 0.15 and 0.20 eV higher on the energy scale. For the neutral dimer (heme)2, the quintet is favorable in which each of the two Fe atoms has two unpaired electrons, and the states with the higher multiplicities 7 and 9 are only 0.10–0.15 eV higher. The calculated energies of dissociation D of the dimers into monomers point to a rather high stability of the (heme) 2 + (D ∼ 1.4 1.4eV) and to a low stability of the neutral dimer (heme)2 (D ∼ 0.3 eV). The R(Fe⋯Ob) distances in the bridges in (heme) 2 + are 0.2–0.4 ? shorter than in (heme)2. The trends in the behavior of the energetic and structural characteristics of the dimers (R(Fe-N), displacements of Fe atoms from the porphyrin ring plane, character of ring distortions, etc.) associated with the involvement of the and AOs of Fe atoms in bonding, as well as the spin density distribution over the Fe atoms and the rings, are analyzed as a function of the multiplicity and charge of the system. Differences in the character of interaction of the heme and ferriporphyrin dimers with molecular oxygen are discussed. Original Russian Text ? O.P. Charkin, N.M. Klimenko, D.O. Charkin, S.H. Lin, 2007, published in Zhurnal Neorganicheskoi Khimii, 2007, Vol. 52, No. 7, pp. 1166–1174.  相似文献   

20.
The complex [Rh(CO)2Cl]2 reacts with two molar equivalent of pyridine carboxylic acids ligands Py-2-COOH(a), Py-3-COOH(b) and Py-4-COOH(c) to yield rhodium(I) dicarbonyl chelate complex [Rh(CO)2(L/)](1a) {L/ = η2-(N,O) coordinated Py-2-COO(a/)} and non-chelate complexes [Rh(CO)2ClL//](1b,c) {L// = η1-(N) coordinated Py-3-COOH(b), Py-4-COOH(c)}. The complexes 1 undergo oxidative addition (OA) reactions with different electrophiles such as CH3I, C2H5I, C6H5CH2Cl and I2 to give penta coordinated Rh(III) complexes of the types [Rh(CO)(CORn)XL/], {n = 1,2,3; R1 = CH3(2a); R2 = C2H5(3a); X = I and R3 = CH2C6H5 (4a); X = Cl}, [Rh(CO)I2L/](5a), [Rh(CO)(CORn)ClXL//] {R1 = CH3(6b,c); R2 = C2H5(7b,c); X = I and R3 = CH2C6H5 (8b,c); X = Cl} and [Rh(CO)ClI2L//](9b,c). The complexes have been characterized by elemental analysis, IR and 1H NMR spectroscopy. Kinetic data for the reaction of 1a–b with CH3I indicate a first order reaction. The catalytic activity of 1a–c for the carbonylation of methanol to acetic acid and its ester is evaluated and a higher turn over number (TON = 810–1094) is obtained compared with that of the well-known commercial species [Rh(CO)2I2] (TON = 653) at mild reaction conditions (temperature 130 ± 5 °C, pressure 35 ± 5 bar).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号