首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
合成了一个新颖的氮氧自由基配体,并用该配体合成了3例未见文献报道的氮氧自由基-稀土三自旋单核配合物Ln(hfac)3(NIT-Ph-4-OCHCH3CH3)2(Ln=Gd(1),Tb(2),Dy(3);hfac=六氟乙酰丙酮;NIT-Ph-4-OCHCH3CH3=4,4,5,5-四甲基-2-(4′-异丙氧基苯基)-咪唑啉-3-氧化-1-氧基自由基)。单晶结构分析表明配合物1、2、3拥有相似的自由基-稀土-自由基单核结构。对配合物的磁性测试结果表明自由基与稀土之间存在着铁磁相互作用。自由基与自由基之间存在着反铁磁相互作用。  相似文献   

2.
EPR研究表明,全氟酰基过氧化物在室温下可将脂肪族仲胺氧化成相应的稳定双烷基氮氧自由基。它们与RNH2的氧化反应是单电子转移过程,生成烷基-全氟酰氧基氮氧自由基RN(O·)OCORF;当R为叔烷基时,还生成RN(O·)R、RN(O·)H、RN(O·)RF和RN(O·)RF′(RF′=RF-CF2)等4种稳定性差别很大的氮氧自由基。EPR研究结果揭示了该反应机理的重要信息。  相似文献   

3.
氮α-位碳-碳键的构造是含氮有机化合物合成中的基本方法。通过氮α-位的碳正离子(亚胺鎓)、碳负离子和碳自由基中间体是实现这一目标的主要途径。相对而言,通过氮α-位碳自由基中间体构造碳-碳键可在较温和的中性条件下进行,且可实现对亚胺鎓离子的极性反转,因而是对正、负离子极性反应的重要补充。作为温和的单电子还原剂,Kagan试剂(二碘化钐)可还原多种含氮有机物产生氮α-位自由基,进而发生自由基偶联反应,在形成氮α-位碳-碳键的方法学发展中扮演了重要的角色。本文综述了二碘化钐参与的氮α-位自由基偶联反应在有机合成中的研究进展,重点归纳评述了二碘化钐参与的亚胺、硝酮、氮杂半缩醛、酰亚胺和酰胺等底物与醛/酮及与缺电子烯烃的自由基偶联反应,为了探讨、克服二碘化钐在相关反应中的局限性,也介绍了二茂钛催化的氮α-位碳自由基偶联反应的最新进展。此外,还重点评述了这些合成方法在含氮活性化合物、生物碱和中间体的简捷合成中的应用。  相似文献   

4.
标题反应于室温在F_(113)(CClF_2CCl_2F)溶液中瞬间完成,产物经分析确定,该反应由硝基烷烃阴离子(R~1R~2CNO_2)向全氟酰基过氧化物(R_FCO_2)_2的单电子转移的决速步骤,生成全氟羧酸盐,全氟酰氧基自由基之脱羧偶合产物R_F—R_F(1)及硝基烷烃自由基偶合产物DN(2);但主要的产物是自由基笼内结合所生成的中间体立即发生1,2-消除得到的醛或酮.本文提供了一个由硝基烷烃合成相应醛和酮的新反应。  相似文献   

5.
赵成学  曲延玲  蒋锡夔  金仙明 《化学学报》1985,43(12):1184-1189
标题反应于室温在F113(CC1F2CCl2F)溶液中瞬间完成。产物经分析确定,该反应由硝基烷烃阴离子(R[1]R[2]CNO2)向全氟酰基过氧化物(RfCO2)2的单电子转移的决速步骤,生成全氟羧酸盐,全氟酰氧基自由基之脱羧偶合产物RF-RF(1)及硝基烷烃自由基偶合产物DN(2);但主要的产物是自由基笼内结合所生成的中间体立即发生1,2-消除得到的醛或酮,本文提供了一个由硝基烷烃合成相应醛和酮的新反应。  相似文献   

6.
由全氟(2-丙氧基丙酰)过氧化物[n-C3F7OCF(CF3)COO]2与亚硝酸钠制得新型的“魔蓝”试剂[n-C3F7OCF(CF3)]2N(O)(1)和n-C3F7OCF(CF3)NO2的F113(CCl2FCClF2)溶液,在室温下与一系列对位取代苯甲醛(3)发生攫氢/自旋截捕反应,生成稳定的全氟(1-丙氧基乙基)对位取代苯甲酰基氮氧自由基(4).由自由基4的超精细偶合常数αN和αFβ与取代基的Hammett极性参数和自旋离域参数的相关分析得知,虽然自旋离域因素影响αN值,但取代基的极性是决定αN值的主要因素.  相似文献   

7.
陈志强  陈静 《合成化学》2006,14(4):350-354,359
合成了未见报道的邻位噻吩基取代咪唑类氮氧自由基———NITS[2-(2′-噻吩基)-4,4,5,5-四甲基咪唑啉-3-氧化-1-氧基自由基]。NITS的晶体属单斜晶系,C2/c空间群,a=23.78(3),b=8.435(10),c=12.297(14),β=103.680(19)°,Z=8。NITS的电学性质经电子顺磁谱表征,并首次利用电化学分析探讨了其反应机理。  相似文献   

8.
刘铸晋等在测定钩吻素子(1)结构的工作中,发现它能被钠-醇还原裂解,亚胺基β位的醚键发生断裂,得到还原裂解产物-双氢钩吻醇(2)。其反应机理可能是一种自由基-阴离子反应,类似于苄基醚的还原断裂。 反应的关键一步是一个单电子在化合物(1)中的碳氮双键上的加成,生成一个自由基-阴离子,接着发生β-键断裂及质子化,这种过程连续进行三次以后,就得到还原  相似文献   

9.
以氮氧自由基为配体,合成了3例氮氧自由基-稀土三自旋单核配合物[Ln(hfac)3(NIT-Ph-4-Br)2](Ln=Gd(1),Tb(2),Dy(3),hfac=六氟乙酰丙酮,NIT-Ph-4-Br=4,4,5,5-四甲基-2-(4′-溴)-咪唑啉-3-氧化-1-氧基自由基。单晶结构分析表明3个配合物均属单斜晶系P21/c空间群,配合物中的Ln髥离子为八配位模式,并且拥有相似的自由基-稀土-自由基单核结构。对配合物的磁性测试结果表明,配合物1中自由基与Gd髥离子之间存在着铁磁相互作用,自由基与自由基之间存在着反铁磁相互作用;配合物2,3中,稀土离子与自由基之间存在弱的反铁磁相互作用  相似文献   

10.
以2-溴异丁酰溴、1,2-乙二醇、1,6-己二醇、顺丁烯二酸酐为主要原料,通过三步反应合成了具有阴离子表面活性的原子转移自由基聚合(ATRP)引发剂——4-[2-(2-溴-2-甲基丙酰氧基)乙氧基]-4-氧代-2-磺酸基丁酸二钠(1a)和4-[6-(2-溴-2-甲基丙酰氧基)己氧基]-4-氧代-2-磺酸基丁酸二钠(1b),其结构经1HNMR,IR和元素分析表征。用1引发无皂乳液聚合,研究结果表明反应是活性自由基乳液聚合,所得乳液非常稳定。  相似文献   

11.
氮氧自由基是目前最广泛采用的自旋标记物[1-2]。2,2,6,6-四甲基哌啶氮氧自由基虽然在许多情况下是很稳定的,但是仍然可以发生歧化、单电子氧化还原等反应[3-4]。  相似文献   

12.
正磷烷基自由基第一次被认为可能的反应中间体是在1957年。十四年之后,由电子自旋共振(ESR)光谱证实了Bu~tOP(OEt)_3自由基的存在。迄今已探察到了大量的正磷烷基自由基的ESR光谱,即使是过于不稳定的自由  相似文献   

13.
本文研究了稳定氮氧自由基-2,2,6,6-四甲基-4-氯哌啶-1-氧(1a)在二氯甲烷中有三氟乙酸存在下与芳香胺及芳杂环化合物3—9的反应,发现在室温下3—9被氧化为相应的自由基正离子并可稳定存在很长时间。通过动力学ESR研究了反应机理,提出了在三氟乙酸存在下,1a首先发生歧化反应生成高活性的氧化剂——氧铵三氟乙酸盐2a,后者再与3—9发生单电子转移反应生成相应的自由基正离子,由此提供了一种用有机氧化剂产生自由基正离子的方便方法。  相似文献   

14.
含氮和磷原子的化合物是生命系统中不可缺少的组成部分,由于其独特的化学、生物和物理性质,已被广泛应用于农业化学、材料科学和制药学.如果一个有机化合物同时含有氮和磷原子,它可能因为胺和膦/磷酸盐基团的协同作用而具有额外的功能.2015年赵玉芬院士和唐果教授报道了一例自由基叠氮膦酰化的例子,该反应虽然有效,但因需使用化学剂量的氧化性自由基引发剂Mn(OAc)3·2H2O,因此,有必要发展一种更环保经济的方法.本文报道了铁催化烯烃的分子间自由基膦叠氮化反应.该方法使用了微量的催化剂,通过自由基接力与叠氮基团转移实现分子间自由基膦叠氮化反应.实验先进行条件筛选,考察了催化剂类型、催化剂用量、氧化剂类型、溶剂和温度对反应的影响,确定以酞菁铁为催化剂,叔丁基过氧化氢(TBHP)为引发剂,乙腈为溶剂,苯乙烯、叠氮基三甲基硅烷、二苯基膦酰为模板反应底物为最佳条件,实现了二苯基膦酰对烯烃的自由基膦酰基叠氮化反应.在最优条件下进行底物拓展,制备得到27种膦叠氮化合物,产率为23%~88%.以制得的膦叠氮产物为起始原料,通过叠氮还原和Click反应制备得到三种衍生物,产率为82%~97%,可作为药物合成中间体进行下一步研究.本文还进行了机理实验和理论计算.在自由基钟实验和自由基捕获实验中,通过两种不同速率的自由基开环反应与自由基捕获反应证实了反应的自由基路径.质谱检测到酞菁铁羟基(PcFeⅢOH)和酞菁铁叠氮(PcFeⅢN3)的存在.采用密度泛函理论计算了不同自旋态下的酞菁铁(PcFe),以确定可能的催化剂种类,并计算出三重态3pcFe最稳定.从三重态3pcFe开始计算铁催化叔丁基过氧化氢的单电子转移,并计算了从叔丁氧基自由基开始的自由基接力,证实了膦酰苄基自由基的形成是最有利的途径;研究结果发现膦酰苄基自由基能与4pcFe(N3)反应,发生叠氮基团转移生成目标产物.在叠氮基团转移计算中,考察了四种合理的途径,分别是苄基在三重态或五重态势能面接近叠氮基团的内部或端位氮原子(Ni和Nt).结果 表明,叠氮基团从叠氮基酞菁铁(Ⅲ)物种(PcFeⅢN3)转移到苄基自由基的活化能(4.8 kcal/mol)极低.据此催化循环机理可能为:酞菁铁首先与叔丁基过氧化氢发生单电子转移形成酞菁铁羟基中间体及叔丁氧自由基;然后,二苯基膦酰的氢原子被叔丁氧自由基攫取生成二苯基膦酰自由基,并加成至苯乙烯形成苄基自由基.同时,酞菁铁羟基中间体与HN3进行配体交换形成酞菁铁叠氮中间体,最后与苄基自由基进行叠氮基团转移生成产物,并重新生成酞菁铁(Ⅱ).本文证实了铁催化叠氮化反应的自由基基团转移机理(外球机理),因为很难想象如何在酞菁铁的同侧同时加成叠氮与苄基基团,通过生成高价铁物种(PcFe-N3·)的内球机理得到产物.该工作将有助于启发更多的金属催化机理研究.  相似文献   

15.
含氮和磷原子的化合物是生命系统中不可缺少的组成部分,由于其独特的化学、生物和物理性质,已被广泛应用于农业化学、材料科学和制药学.如果一个有机化合物同时含有氮和磷原子,它可能因为胺和膦/磷酸盐基团的协同作用而具有额外的功能.2015年赵玉芬院士和唐果教授报道了一例自由基叠氮膦酰化的例子,该反应虽然有效,但因需使用化学剂量的氧化性自由基引发剂Mn(OAc)_3·2H_2O,因此,有必要发展一种更环保经济的方法.本文报道了铁催化烯烃的分子间自由基膦叠氮化反应.该方法使用了微量的催化剂,通过自由基接力与叠氮基团转移实现分子间自由基膦叠氮化反应.实验先进行条件筛选,考察了催化剂类型、催化剂用量、氧化剂类型、溶剂和温度对反应的影响,确定以酞菁铁为催化剂,叔丁基过氧化氢(TBHP)为引发剂,乙腈为溶剂,苯乙烯、叠氮基三甲基硅烷、二苯基膦酰为模板反应底物为最佳条件,实现了二苯基膦酰对烯烃的自由基膦酰基叠氮化反应.在最优条件下进行底物拓展,制备得到27种膦叠氮化合物,产率为23%~88%.以制得的膦叠氮产物为起始原料,通过叠氮还原和Click反应制备得到三种衍生物,产率为82%~97%,可作为药物合成中间体进行下一步研究.本文还进行了机理实验和理论计算.在自由基钟实验和自由基捕获实验中,通过两种不同速率的自由基开环反应与自由基捕获反应证实了反应的自由基路径.质谱检测到酞菁铁羟基(PcFe~ⅢOH)和酞菁铁叠氮(Pc Fe~ⅢN_3)的存在.采用密度泛函理论计算了不同自旋态下的酞菁铁(Pc Fe),以确定可能的催化剂种类,并计算出三重态~3PcFe最稳定.从三重态~3PcFe开始计算铁催化叔丁基过氧化氢的单电子转移,并计算了从叔丁氧基自由基开始的自由基接力,证实了膦酰苄基自由基的形成是最有利的途径;研究结果发现膦酰苄基自由基能与~4PcFe(N_3)反应,发生叠氮基团转移生成目标产物.在叠氮基团转移计算中,考察了四种合理的途径,分别是苄基在三重态或五重态势能面接近叠氮基团的内部或端位氮原子(N_i和N_t).结果表明,叠氮基团从叠氮基酞菁铁(Ⅲ)物种(Pc Fe~ⅢN_3)转移到苄基自由基的活化能(4.8 kcal/mol)极低.据此催化循环机理可能为:酞菁铁首先与叔丁基过氧化氢发生单电子转移形成酞菁铁羟基中间体及叔丁氧自由基;然后,二苯基膦酰的氢原子被叔丁氧自由基攫取生成二苯基膦酰自由基,并加成至苯乙烯形成苄基自由基.同时,酞菁铁羟基中间体与HN_3进行配体交换形成酞菁铁叠氮中间体,最后与苄基自由基进行叠氮基团转移生成产物,并重新生成酞菁铁(Ⅱ).本文证实了铁催化叠氮化反应的自由基基团转移机理(外球机理),因为很难想象如何在酞菁铁的同侧同时加成叠氮与苄基基团,通过生成高价铁物种(PcFe-N_3·)的内球机理得到产物.该工作将有助于启发更多的金属催化机理研究.  相似文献   

16.
机体内的分子主要由碳、氢、氧、氮、磷、硫等原子构成。如果用R代表H原子以外所有原子,那么可以用RH表示机体内的一切分子。H原子与R基呈共价健结合,即以一对电子相连接。自由基(又称游离基,free radical)就是RH分子断裂时,原来连接两者的一对电子分别分配到R和H上所形成的各带一个电子的R·+H.状态。自由基广泛存在于生物体内和环境中,自然状态下的人体各脏器及细菌中均可检出,在烟、污染的空气和熏制食品中亦大量存在。自由基种类很多,包括有机自由基(R·)、氢过氧基(HOO·)、超氧阴离子自由基(O2·)、羟自由基(HO·)、有机过氧基(ROO·)等。在细胞的正常生理过程中,自由基反应是相当普通的,不会造成损害,但当自由基反应异常或失控时,就会产生严重后果。无论内源性或外源性自由基都可作为引发剂与机体内的许多物质如核蛋白、脂质作用而引起异常自由基反应。细胞膜不饱和脂类(以RH代表)的过氧化反应就是自由基反应的一个实例。RH在氧及自由基引发剂作用下去氢形成有机自由基(R·);该自由基接受氧而产生脂酸过氧基(ROO·)。ROO.有能力与其他不饱和脂肪酸(RH)起反应,生成不稳定的不饱和氢过氧化物ROOH。该物质...  相似文献   

17.
应用量子化学密度泛函理论(DFT),在B3LYP/cc-pVDZ基组水平上,对N-(4-脱氢苯基)吡啶离子与不同结构的氮氧自由基反应进行了热动力学研究.优化了反应通道上反应物、中间体、过渡态和产物的几何构型并计算出它们的零点振动能( Ezpv)和焓值,分析数据研究位阻效应对反应的影响.研究表明3类氮氧自由基均与N-(4-脱氢苯基)吡啶离子自由基反应经过1个无位垒的放热过程生成1个中间体,然后发生自由基的重排,开环的氮氧自由基DTBN相较于闭合的氮氧自由基TMIO和TEMPO化学性质活泼、反应过程复杂.表明反应物本身的位阻效应为此类自由基反应的主要影响因素.  相似文献   

18.
合成了一个新颖的氮氧自由基配体,并用该配体合成了3例未见文献报道的氮氧自由基-稀土三自旋单核配合物Ln(hfac)3(NIT-Ph-4-OCHCH3CH3)2(Ln=Gd(1), Tb(2), Dy(3); hfac=六氟乙酰丙酮; NIT-Ph-4-OCHCH3CH3=4,4,5,5-四甲基-2-(4'-异丙氧基苯基)-咪唑啉-3-氧化-1-氧基自由基)。单晶结构分析表明配合物123拥有相似的自由基-稀土-自由基单核结构。对配合物的磁性测试结果表明自由基与稀土之间存在着铁磁相互作用。自由基与自由基之间存在着反铁磁相互作用。  相似文献   

19.
杨文超  陈彩云  李君风  王祖利 《催化学报》2021,42(11):1865-1875
多聚氮杂环化合物在有机合成、药物化学以及材料化学等领域具有重要的作用.人们已经在多聚氮杂环的修饰和可控转换领域取得了诸多突破性的研究成果.在多种多聚氮杂环转换反应中,脱氮是一类重要反应,可以快速地构建其他氮杂环或者C?N键.通常而言,多聚氮杂环化合物更易于脱氮形成金属卡宾中间体,继而发生后续串联或环化反应,但涉及自由基中间体的多聚氮杂环脱氮反应尚未得到充分关注和研究.在过去几年中,得益于现代合成手段如有机光化学合成、有机电化学合成和有机光电合成等的革新,自由基化学得到快速发展,建立了很多多聚杂环脱氮自由基串联反应,为高度复杂的杂环骨架或具有复杂杂环体系的天然产物提供了一条通用且便捷的合成路径.光催化剂在有效地将可见光中的能量转移至非吸收化合物方面的应用越来越受到关注,该方法可温和而有效地生成自由基,以新的方式形成化学键.此外,啉钴与卟啉铁催化剂在多聚杂环的脱氮反应中亦展现出较好的催化性能.本文综述了多聚氮杂环的脱氮自由基转化(C?N键的构建)领域的最新进展,重点讨论了脱氮生成自由基的方法与串联模式和反应机理,分析了存在的挑战.本文还根据反应底物的类别从四个模块展开讨论:(1)苯并三嗪和苯并噻三嗪的自由基脱氮串联反应;(2)苯并三氮唑的自由基脱氮串联反应;(3)吡啶三氮唑与四氮唑的脱氮反应;(4)3-氨基吲唑的自由基脱氮反应.综上,研究者们通过多聚氮杂环的脱氮自由基转化(C?N键的构建)的方法合成了一些重要的药物分子及其前体,并证明了该方法具有潜在的应用价值.未来,将多聚氮杂环脱氮反应应用于活性天然产物合成与修饰是非常可行的.  相似文献   

20.
通过利用热力学循环估测气相均裂键能 (BDE)的方法 ,考察了 48个含N H键的化合物 (GNHG′)的BDE数值 ,较系统地研究了双取代基对氮自由基热力学稳定性的影响 .结果表明 ,氮自由基上的双取代基效应的表现形式与碳自由基有所不同 .一般来说 ,由于饱和效应 ,第 2个取代基对自由基稳定性的影响会有所减弱 ;但当带有可形成三电子键的供电子基 (如 ,NH2 ,OH等 )或可形成“离域通道”的拉电子基 (如 ,Ph3 P+)时 ,双取代基会对氮自由基发生协同作用 ,即产生“协稳定效应” .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号