首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The evaporation of water from hydrated alkaline earth metal ions, produced by electrospray ionization, was studied in a Fourier transform mass spectrometer. Zero-pressure-limit dissociation rate constants for loss of a single water molecule from the hydrated divalent metal ions, M(2+)(H(2)O)(n) (M = Mg, Ca, and Sr for n = 5-7, and M = Ba for n = 4-7), are measured as a function of temperature using blackbody infrared radiative dissociation. From these values, zero-pressure-limit Arrhenius parameters are obtained. By modeling the dissociation kinetics using a master equation formalism, threshold dissociation energies (E(o)) are determined. These reactions should have a negligible reverse activation barrier; therefore, E(o) values should be approximately equal to the binding energy or hydration enthalpy at 0 K. For the hepta- and hexahydrated ions at low temperature, binding energies follow the trend expected on the basis of ionic radii: Mg > Ca > Sr > Ba. For the hexahydrated ions at high temperature, binding energies follow the order Ca > Mg > Sr > Ba. The same order is observed for the pentahydrated ions. Collisional dissociation experiments on the tetrahydrated species result in relative dissociation rates that directly correlate with the size of the metals. These results indicate the presence of two isomers for hexahydrated magnesium ions: a low-temperature isomer in which the six water molecules are located in the first solvation shell, and a high-temperature isomer with the most likely structure corresponding to four water molecules in the inner shell and two water molecules in the second shell. These results also indicate that the pentahydrated magnesium ions have a structure with four water molecules in the first solvation shell and one in the outer shell. The dissociation kinetics for the hexa- and pentahydrated clusters of Ca(2+), Sr(2+), and Ba(2+) are consistent with structures in which all the water molecules are located in the first solvation shell.  相似文献   

2.
王振  张静 《结构化学》2011,30(5):666-671
Quantum chemical calculations on some possible equilibrium geometries of C24O2 isomers derived from C24 (D6) and C24O have been performed using density functional theory (DFT) method. The geometric and electronic structures as well as the relative energies and thermal stabilities of various C24O2 isomers at the ground state have been calculated at the B3LYP/6-31G(d) level of theory. And the 1,4,2,5-C24O2 isomer was found to be the most stable geometry where two oxygen atoms were added to the longest carbon-carbon bonds in the same pentagon from a thermodynamic point of view. Based on the optimized neutral geometries, the vertical ionization potential and vertical electron affinity have been obtained. Meanwhile, the vibrational frequencies, IR spectrum, and 13C chemical shifts of various C24O2 isomers have been calculated and analyzed.  相似文献   

3.
The geometric structures of gas-phase Sr(2+) hydrates are calculated quantum chemically by using hybrid (B3LYP) and meta-GGA (TPSS) density functional theory, and a range of thermodynamic data (including sequential bond enthalpies, entropies and free energies for the reactions Sr(2+)(H(2)O)(n-1)+H(2)O→Sr(2+)(H(2)O)(n)) are shown to be in excellent agreement with experiment. When the number of coordinating water molecules exceeds six, such that water begins to occupy the second solvation shell, it is found that detailed analysis based on both geometrical and conformational entropy is required in order to confidently identify the experimentally observed structures. The significant increase in coordination number observed experimentally between the gas- and aqueous-phase species is successfully reproduced, as is the first solvation shell geometry. Inaccurate second shell geometries imply that larger model systems may be required to achieve agreement with experiment. Candidate species for on-going computational studies of the interaction of hydrated Sr(2+) with brucite surfaces have been identified.  相似文献   

4.
The anharmonic OH stretching vibrational frequencies, ν(OH), for the first-shell water molecules around the Li(+), Ca(2+), Mg(2+), and Al(3+) ions in dilute aqueous solutions have been calculated based on classical molecular dynamics (MD) simulations and quantum-mechanical (QM) calculations. For Li(+)(aq), Ca(2+)(aq), Mg(2+)(aq), and Al(3+)(aq), our calculated IR frequency shifts, Δν(OH), with respect to the gas-phase water frequency, are about -300, -350, -450, and -750?cm(-1), compared to -290, -290, -420, and -830?cm(-1) from experimental infrared (IR) studies. The agreement is thus quite good, except for the order between Li(+) and Ca(2+). Given that the polarizing field from the Ca(2+) ion ought to be larger than that from Li(+)(aq), our calculated result seems reasonable. Also the absolute OH frequencies agree well with experiment. The method we used is a sequential four-step procedure: QM(electronic) to make a force field+MD simulation+QM(electronic) for point-charge-embedded M(n+) (H(2)O)(y) (second?shell) (H(2)O)(z) (third?shell) clusters+QM(vibrational) to yield the OH spectrum. The many-body Ca(2+)-water force-field presented in this paper is new. IR intensity-weighting of the density-of-states frequency distributions was carried out by means of the squared dipole moment derivatives.  相似文献   

5.
The hydration structure of Cr(2+) has been studied using molecular dynamics (MD) simulations including three-body corrections and combined ab initio quantum mechanical/molecular mechanical (QM/MM) MD simulations at the Hartree-Fock level. The structural properties are determined in terms of radial distribution functions, coordination numbers, and several angle distributions. The mean residence time was evaluated for describing ligand exchange processes in the second hydration shell. The Jahn-Teller distorted octahedral [Cr(H(2)O)(6)](2+) complex was pronounced in the QM/MM MD simulation. The first-shell distances of Cr(2+) are in the range of 1.9-2.8 A, which are slightly larger than those observed in the cases of Cu(2+) and Ti(3+). No first-shell water exchange occurred during the simulation time of 35 ps. Several water-exchange processes were observed in the second hydration shell with a mean residence time of 7.3 ps.  相似文献   

6.
Molecular-dynamics (MD) trajectories and high-level ab initio methods have been used to study the low-energy mechanism for D(2)O-H(+)(H(2)O)(n) reactions. At low collisional energies, MD simulations show that the collisional complexes are long-lived and undergo fast monomolecular isomerization, converting between different isomers within 50-500 ps. Such processes, primarily involving water-molecule shifts along a water chain, require the surmounting of very-low-energy barriers and present sizable non- Rice-Ramsperger-Kassel-Marcus (RRKM) effects, which are interpreted as a lack of randomization of the internal kinetic energy. Interestingly, the rate of water shifts was found to increase upon increasing the size of the cluster. Based on these findings, we propose to incorporate the following steps into the mechanism for low-energy isotopic scrambling these D(2)O-H(+)(H(2)O)(n) reactions: a) formation of the collisional complex [H(+)(H(2)O)(n)D(2)O]* in a vibro-rotational excited state; b) incorporation of the heavy-water molecule in the cluster core as HD(2)O(+) by means of isomerization involving molecular shifts; c) displacement of solvation molecules from the first shell of HD(2)O(+) inducing de-deuteration (shift of a D(+) to a neighbor water molecule); d) reorganization of the clusters and/or expulsion of one of the isotopic variants of water (H(2)O, HDO or D(2)O) from the periphery of the complex.  相似文献   

7.
The optimized geometry and energetic properties of Fe(D2O)n 3+ clusters, with n = 4 and 6, have been studied with density-functional theory calculations and the BLYP functional, and the hydration of a single Fe 3+ ion in a periodic box with 32 water molecules at room temperature has been studied with Car-Parrinello molecular dynamics and the same functional. We have compared the results from the CPMD simulation with classical MD simulations, using a flexible SPC-based water model and the same number of water molecules, to evaluate the relative strengths and weaknesses of the two MD methods. The classical MD simulations and the CPMD simulations both give Fe-water distances in good agreement with experiment, but for the intramolecular vibrations, the classical MD yields considerably better absolute frequencies and ion-induced frequency shifts. On the other hand, the CPMD method performs considerably better than the classical MD in describing the intramolecular geometry of the water molecule in the first hydration shell and the average first shell...second shell hydrogen-bond distance. Differences between the two methods are also found with respect to the second-shell water orientations. The effect of the small box size (32 vs 512 water molecules) was evaluated by comparing results from classical simulations using different box sizes; non-negligible effects are found for the ion-water distance and the tilt angles of the water molecules in the second hydration shell and for the O-D stretching vibrational frequencies of the water molecules in the first hydration shell.  相似文献   

8.
Pair interaction potentials (IPs) were defined to describe the La(3+)-OH(2) interaction for simulating the La(3+) hydration in aqueous solution. La(3+)-OH(2) IPs are taken from the literature or parametrized essentially to reproduce ab initio calculations at the second-order Moller-Plesset level of theory on La(H(2)O)(8) (3+). The IPs are compared and used with molecular dynamics (MD) including explicit polarization, periodic boundary conditions of La(H(2)O)(216) (3+) boxes, and TIP3P water model modified to include explicit polarization. As expected, explicit polarization is crucial for obtaining both correct La-O distances (r(La-O)) and La(3+) coordination number (CN). Including polarization also modifies hydration structure up to the second hydration shell and decreases the number of water exchanges between the La(3+) first and second hydration shells. r(La-O) ((1))=2.52 A and CN((1))=9.02 are obtained here for our best potential. These values are in good agreement with experimental data. The tested La-O IPs appear to essentially account for the La-O short distance repulsion. As a consequence, we propose that most of the multibody effects are correctly described by the explicit polarization contributions even in the first La(3+) hydration shell. The MD simulation results are slightly improved by adding a-typically negative 1r(6)-slightly attractive contribution to the-typically exponential-repulsive term of the La-O IP. Mean residence times are obtained from MD simulations for a water molecule in the first (1082 ps) and second (7.6 ps) hydration shells of La(3+). The corresponding water exchange is a concerted mechanism: a water molecule leaving La(H(2)O)(9) (3+) in the opposite direction to the incoming water molecule. La(H(2)O)(9) (3+) has a slightly distorded "6+3" tricapped trigonal prism D(3h) structure, and the weakest bonding is in the medium triangle, where water exchanges take place.  相似文献   

9.
Interactions between metal ions and amino acids are common both in solution and in the gas phase. Here, the effect of metal ions and water on the structure of glycine is examined. The effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water on structures of Gly.Mn+(H2O)m and GlyZwitt.Mn+(H2O)m (m = 0, 2, 5) complexes have been determined theoretically by employing the hybrid B3LYP exchange-correlation functional and using extended basis sets. Selected calculations were carried out also by means of CBS-QB3 model chemistry. The interaction enthalpies, entropies, and Gibbs energies of eight complexes Gly.Mn+ (Mn+ = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) were determined at the B3LYP density functional level of theory. The computed Gibbs energies DeltaG degrees are negative and span a rather broad energy interval (from -90 to -1100 kJ mol(-1)), meaning that the ions studied form strong complexes. The largest interaction Gibbs energy (-1076 kJ mol(-1)) was computed for the NiGly2+ complex. Calculations of the molecular structure and relative stability of the Gly.Mn+(H2O)m and GlyZwitt.Mn+(H2O)m (Mn+ = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+; m = 0, 2, and 5) systems indicate that in the complexes with monovalent metal cations the most stable species are the NO coordinated metal cations in non-zwitterionic glycine. Divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ prefer coordination via the OO bifurcated bonds of the zwitterionic glycine. Stepwise addition of two and five water molecules leads to considerable changes in the relative stability of the hydrated species. Addition of two water molecules at the metal ion in both Gly.Mn+ and GlyZwitt.Mn+ complexes reduces the relative stability of metallic complexes of glycine. For Mn+ = Li+ or Na+, the addition of five water molecules does not change the relative order of stability. In the Gly.K+ complex, the solvation shell of water molecules around K+ ion has, because of the larger size of the potassium cation, a different structure with a reduced number of hydrogen-bonded contacts. This results in a net preference (by 10.3 kJ mol(-1)) of the GlyZwitt.K+H2O5 system. Addition of five water molecules to the glycine complexes containing divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ results in a net preference for non-zwitterionic glycine species. The computed relative Gibbs energies are quite high (-10 to -38 kJ mol(-1)), and the NO coordination is preferred in the Gly.Mn+(H2O)5 (Mn+ = Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) complexes over the OO coordination.  相似文献   

10.
The structural and energetic features of a variety of gas-phase aluminum ion hydrates containing up to 18 water molecules have been studied computationally using density functional theory. Comparisons are made with experimental data from neutron diffraction studies of aluminum-containing crystal structures listed in the Cambridge Structural Database. Computational studies indicate that the hexahydrated structure Al[H(2)O](6)(3+) (with symmetry T(h)()), in which all six water molecules are located in the innermost coordination shell, is lower in energy than that of Al[H(2)O](5)(3+).[H(2)O], where only five water molecules are in the inner shell and one water molecule is in the second shell. The analogous complex with four water molecules in the inner shell and two in the outer shell undergoes spontaneous proton transfer during the optimization to give [Al[H(2)O](2)[OH](2)](+).[H(3)O(+)](2), which is lower in energy than Al[H(2)O](6)(3+); this finding of H(3)O(+) is consistent with the acidity of concentrated Al(3+) solutions. Since, however, Al[H(2)O](6)(3+) is detected in solutions of Al(3+), additional water molecules are presumed to stabilize the hexa-aquo Al(3+) cation. Three models of a trivalent aluminum ion complex surrounded by a total of 18 water molecules arranged in a first shell containing 6 water molecules and a second shell of 12 water molecules are discussed. We find that a model with S(6) symmetry for which the Al[H(2)O](6)(3+) unit remains essentially octahedral and participates in an integrated hydrogen bonded network with the 12 outer-shell water molecules is lowest in energy. Interactions between the 12 second-shell water molecules and the trivalent aluminum ion in Al[H(2)O](6)(3+) do not appear to be sufficiently strong to orient the dipole moments of these second-shell water molecules toward the Al(3+) ion.  相似文献   

11.
Experimental results taken from both the condensed and gaseous phase show that, when associated with water, the three dications Sn(2+), Pb(2+), and Hg(2+) exhibit a facile proton-transfer reaction. In the gas phase, no stable [M.(H(2)O)(n)](2+) ions are observed; but instead the cations appear to undergo rapid hydrolysis to give ions of the form M(+)OH(H(2)O)(n-1). A series of ab initio calculations have been undertaken on the structures and proton-transfer reaction profiles associated with the complexes [M.(H(2)O)(2,4)](2+), where M is one of Sn, Pb, Hg, and Ca. The latter has been used as a reference point both in terms of comparisons with previous calculations, and the fact that Ca(2+) is a very weak acid. The calculations show that for Sn(2+), Pb(2+), and Hg(2+), the only barriers to proton transfer are those associated with the movement of water molecules. In the gas phase, these barriers could be overcome through energy gained during ion formation, and in the condensed phase the thermal motion of water molecules would be sufficient. In contrast, the calculations show that for Ca(2+) it is the proton-transfer step that provides the most significant reaction barrier. Proton transfer in Sn(2+) and Pb(2+) is further assisted by distortions in the geometries of [M.(H(2)O)(2,4)](2+) complexes due to voids created by the 5s(2) (6s(2)) inert lone pair. For Hg(2+), ease of proton transfer is derived partly from the high degree of covalent bonding found in both the reactants and products.  相似文献   

12.
Structural and dynamical properties of the TiO(2+) ion in aqueous solution have been investigated by using the new ab initio quantum mechanical charge field (QMCF) molecular dynamics (MD) formalism, which does not require any other potential functions except those for solvent-solvent interactions. Both first and second hydration shell have been treated at Hartree-Fock (HF) quantum mechanical level. A Ti-O bond distance of 1.5 A was observed for the [Ti=O](2+) ion. The first hydration shell of the ion shows a varying coordination number ranging from 5 to 7, five being the dominant one and representing one axial and four equatorial water molecules directly coordinated to Ti, which are located at 2.3 A and 2.1 A, respectively. The flexibility in the coordination number reflects the fast exchange processes, which occur only at the oxo atom, where water ligands are weakly bound through hydrogen bonds. Considering the first shell hydration, the composition of the TiO(2+) hydrate can be characterized as [(H(2)O)(0.7)(H(2)O)(4) (eq)(H(2)O)(ax)](2+). The second shell consists in average of 12 water molecules located at a mean distance of 4.4 A. Several other structural parameters such as radial and angular distribution functions and coordination number distributions were analyzed to fully characterize the hydration structure of the TiO(2+) ion in aqueous solution. For the dynamics of the TiO(2+) ion, different sets of dynamical parameters such as Ti=O, Ti-O(eq), and Ti-O(ax) stretching frequencies and ligands' mean residence times were evaluated. During the simulation time of 15 ps, 3 water exchange processes in the first shell were observed at the oxo atom, corresponding to a mean residence time of 3.6 ps. The ligands' mean residence time for the second shell was determined as 3.5 ps.  相似文献   

13.
Molecular dynamics (MD) computer simulations of liquid water adsorbed on the muscovite (001) surface provide a greatly increased, atomistically detailed understanding of surface-related effects on the spatial variation in the structural and orientational ordering, hydrogen bond (H-bond) organization, and local density of H2O molecules at this important model phyllosilicate surface. MD simulations at constant temperature and volume (statistical NVT ensemble) were performed for a series of model systems consisting of a two-layer muscovite slab (representing 8 crystallographic surface unit cells of the substrate) and 0 to 319 adsorbed H2O molecules, probing the atomistic structure and dynamics of surface aqueous films up to 3 nm in thickness. The results do not demonstrate a completely liquid-like behavior, as otherwise suggested from the interpretation of X-ray reflectivity measurements and earlier Monte Carlo simulations. Instead, a more structurally and orientationally restricted behavior of surface H2O molecules is observed, and this structural ordering extends to larger distances from the surface than previously expected. Even at the largest surface water coverage studied, over 20% of H2O molecules are associated with specific adsorption sites, and another 50% maintain strongly preferred orientations relative to the surface. This partially ordered structure is also different from the well-ordered 2-dimensional ice-like structure predicted by ab initio MD simulations for a system with a complete monolayer water coverage. However, consistent with these ab initio results, our simulations do predict that a full molecular monolayer surface water coverage represents a relatively stable surface structure in terms of the lowest diffusional mobility of H2O molecules along the surface. Calculated energies of water adsorption are in good agreement with available experimental data.  相似文献   

14.
First principles molecular dynamics simulations of the hydration shells surrounding UO(2)(2+) ions are reported for temperatures near 300 K. Most of the simulations were done with 64 solvating water molecules (22 ps). Simulations with 122 water molecules (9 ps) were also carried out. The hydration structure predicted from the simulations was found to agree with very well-known results from x-ray data. The average U=O bond length was found to be 1.77 A. The first hydration shell contained five trigonally coordinated water molecules that were equatorially oriented about the O-U-O axis with the hydrogen atoms oriented away from the uranium atom. The five waters in the first shell were located at an average distance of 2.44 A (2.46 A, 122 water simulation). The second hydration shell was composed of distinct equatorial and apical regions resulting in a peak in the U-O radial distribution function at 4.59 A. The equatorial second shell contained ten water molecules hydrogen bonded to the five first shell molecules. Above and below the UO(2)(2+) ion, the water molecules were found to be significantly less structured. In these apical regions, water molecules were found to sporadically hydrogen bond to the oxygen atoms of the UO(2)(2+), oriented in such a way as to have their protons pointed toward the cation. While the number of apical waters varied greatly, an average of five to six waters was found in this region. Many water transfers into and out of the equatorial and apical second solvation shells were observed to occur on a picosecond time scale via dissociative mechanisms. Beyond these shells, the bonding pattern substantially returned to the tetrahedral structure of bulk water.  相似文献   

15.
POLIR, a polarizable water potential optimized for vibrational and intermolecular spectroscopy in pure water but not optimized for solvation, is used to describe solutions of the divalent metal cations Ca(2+), Mg(2+), and Cu(2+). The spectral shifts in the O-H stretch region obtained from classical simulations are in agreement with experiment. The water-ion binding energies are dominated by classical electrostatics, even though the Cu(2+) case might be considered to involve an intermediate-strength chemical bond. Three-body energies of the ion with the first solvation shell are in agreement with ab initio calculations. Our results indicate the importance of polarization in the development of accurate, transferable, force fields and the power of classical methods when it is carefully included.  相似文献   

16.
Ab initio molecular dynamics simulations at 300 K, based on density functional theory, are performed to study the hydration shell geometries, solvent dipole, and first hydrolysis reaction of the uranium(IV) (U(4+)) and uranyl(V) (UO(2)(+)) ions in aqueous solution. The solvent dipole and first hydrolysis reaction of aqueous uranyl(VI) (UO(2)(2+)) are also probed. The first shell of U(4+) is coordinated by 8-9 water ligands, with an average U-O distance of 2.42 ?. The average first shell coordination number and distance are in agreement with experimental estimates of 8-11 and 2.40-2.44 ?, respectively. The simulated EXAFS of U(4+) matches well with recent experimental data. The first shell of UO(2)(+) is coordinated by five water ligands in the equatorial plane, with the average U═O(ax) and U-O distances being 1.85 ? and 2.54 ?, respectively. Overall, the hydration shell structure of UO(2)(+) closely matches that of UO(2)(2+), except for small expansions in the average U═O(ax) and U-O distances. Each ion strongly polarizes their respective first-shell water ligands. The computed acidity constants (pK(a)) of U(4+) and UO(2)(2+) are 0.93 and 4.95, in good agreement with the experimental values of 0.54 and 5.24, respectively. The predicted pK(a) value of UO(2)(+) is 8.5.  相似文献   

17.
Picosecond and femtosecond X-ray absorption spectroscopy is used to probe the changes of the solvent shell structure upon electron abstraction of aqueous iodide using an ultrashort laser pulse. The transient L(1,3) edge EXAFS at 50 ps time delay points to the formation of an expanded water cavity around the iodine atom, in good agreement with classical and quantum mechanical/molecular mechanics (QM/MM) molecular dynamics (MD) simulations. These also show that while the hydrogen atoms pointed toward iodide, they predominantly point toward the bulk solvent in the case of iodine, suggesting a hydrophobic behavior. This is further confirmed by quantum chemical (QC) calculations of I(-)/I(0)(H(2)O)(n=1-4) clusters. The L(1) edge sub-picosecond spectra point to the existence of a transient species that is not present at 50 ps. The QC calculations and the QM/MM MD simulations identify this transient species as an I(0)(OH(2)) complex inside the cavity. The simulations show that upon electron abstraction most of the water molecules move away from iodine, while one comes closer to form the complex that lives for 3-4 ps. This time is governed by the reorganization of the main solvation shell, basically the time it takes for the water molecules to reform an H-bond network. Only then is the interaction with the solvation shell strong enough to pull the water molecule of the complex toward the bulk solvent. Overall, much of the behavior at early times is determined by the reorientational dynamics of water molecules and the formation of a complete network of hydrogen bonded molecules in the first solvation shell.  相似文献   

18.
A molecular dynamics (MD) simulation based on a combined ab initio quantum mechanics/molecular mechanics (QM/MM) method has been performed to investigate the solvation structure and dynamics of H3O+ in water. The QM region is a sphere around the central H3O+ ion, and contains about 6-8 water molecules. It is treated at the Hartree-Fock (HF) level, while the rest of the system is described by means of classical pair potentials. The Eigen complex (H9O4+) is found to be the most prevalent species in the aqueous solution, partly due to the selection scheme of the center of the QM region. The QM/MM results show that the Eigen complex frequently converts back and forth into the Zundel (H5O2+) structure. Besides the three nearest-neighbor water molecules directly hydrogen-bonded to H3O+, other neighbor waters, such as a fourth water molecule which interacts preferentially with the oxygen atom of the hydronium ion, are found occasionally near the ion. Analyses of the water exchange processes and the mean residence times of water molecules in the ion's hydration shell indicate that such next-nearest neighbor water molecules participate in the rearrangement of the hydrogen bond network during fluctuative formation of the Zundel ion and, thus, contribute to the Grotthuss transport of the proton.  相似文献   

19.
Structural and thermodynamic aspects of alkaline earth metal dication (Mg(2+), Ca(2+), Sr(2+), Ba(2+)) binding to E. coli ribonuclease H1 (RNase H1) have been investigated using both experimental and theoretical methods. The various metal-binding modes of the enzyme were explored using classical molecular dynamics simulations, and relative binding free energies were subsequently evaluated by free energy simulations. The trends in the free energies of model systems based on the simulation structures were subsequently verified using a combination of density functional theory and continuum dielectric methods. The calculations provide a physical basis for the experimental results and suggest plausible role(s) for the metal cation and the catalytically important acidic residues in protein function. Magnesium ion indirectly activates water attack of the phosphorus atom by freeing one of the active site carboxylate residues, D70, to act as a general base through its four first-shell water molecules, which prevent D70 from binding directly to Mg(2+). Calcium ion, on the other hand, inhibits enzyme activity by preventing D70 from acting as a general base through bidentate interactions with both carboxylate oxygen atoms of D70. These additional interactions to D70, in addition to the D10 and E48 monodentate interactions found for Mg(2+), enable Ca(2+) to bind tighter than the other divalent ions. However, a bare Mg(2+) ion with two or less water molecules in the first shell could bind directly to the three active-site carboxylates, in particular D70, thus inhibiting enzymatic activity. The present analyses and results could be generalized to other members of the RNase H family that possess the same structural fold and show similar metal-binding site and Mg(2+)-dependent activity.  相似文献   

20.
Clusters of uracil (U) about a calcium dication, U(n)Ca(2+) (n = 14-4), have been studied in the gas phase by both experimental and theoretical methods. Temperature dependent blackbody infrared radiative dissociation (BIRD) experiments were performed on U(n)Ca(2+) clusters with n = 14-5 and the observed Arrhenius parameters are reported here. Master equation modeling of the BIRD kinetics data was carried out to determine threshold dissociation energies. Initial geometry calculations were performed using the B3LYP density functional and 3-21G(d) basis set. A sample of ten conformations per cluster was obtained through a simulated annealing study. These structures were optimized using B3LYP/6-31G(d) level of theory. Fragment-based hybrid many body interaction (HMBI) MP2/6-311++G(2df,2p)/Amoeba calculations were performed on representative conformations to determine theoretical binding energies. Results were examined in relation to cluster size (n). A significant increase in the energy required to remove uracil from U(6)Ca(2+) when compared to larger clusters supports previous reports that the calcium ion is coordinated by six uracil molecules in the formation of an inner shell. For clusters larger than n = 6, an odd-even alternation in threshold dissociation energies was observed, suggesting that the outer shell uracil molecules bind as dimers to the inner core. Proposed binding schemes are presented. Multiple structures of U(5)Ca(2+) are suggested as being present in the gas phase where the fifth uracil may be either part of the first or second solvation shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号