首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In this paper, an interacting dark energy model in a non-flat universe is studied, with taking interaction form $C=\alpha H\rho _{de}$ C = α H ρ d e . And in this study a property for the mysterious dark energy is aforehand assumed, i.e. its equation of state $w_{\Lambda }=-1$ w Λ = - 1 . After several derivations, a power-law form of dark energy density is obtained $\rho _{\Lambda } \propto a^{-\alpha }$ ρ Λ ∝ a - α , here $a$ a is the cosmic scale factor, $\alpha $ α is a constant parameter introducing to describe the interaction strength and the evolution of dark energy. By comparing with the current cosmic observations, the combined constraints on the parameter $\alpha $ α is investigated in a non-flat universe. For the used data they include: the Union2 data of type Ia supernova, the Hubble data at different redshifts including several new published datapoints, the baryon acoustic oscillation data, the cosmic microwave background data, and the observational data from cluster X-ray gas mass fraction. The constraint results on model parameters are $\Omega _{K}=0.0024\,(\pm 0.0053)^{+0.0052+0.0105}_{-0.0052-0.0103}, \alpha =-0.030\,(\pm 0.042)^{+0.041+0.079}_{-0.042-0.085}$ Ω K = 0.0024 ( ± 0.0053 ) - 0.0052 - 0.0103 + 0.0052 + 0.0105 , α = - 0.030 ( ± 0.042 ) - 0.042 - 0.085 + 0.041 + 0.079 and $\Omega _{0m}=0.282\,(\pm 0.011)^{+0.011+0.023}_{-0.011-0.022}$ Ω 0 m = 0.282 ( ± 0.011 ) - 0.011 - 0.022 + 0.011 + 0.023 . According to the constraint results, it is shown that small constraint values of $\alpha $ α indicate that the strength of interaction is weak, and at $1\sigma $ 1 σ confidence level the non-interacting cosmological constant model can not be excluded.  相似文献   

2.
The variation of two-photon absorption (TPA) coefficient \(\beta _{\mathrm{TPA}} (\omega )\) of Si excited at difference photon energy was investigated. The TPA coefficient was measured by using a picosecond pulsed laser with the wavelength could be tuned in a wide photon-energy range. An equivalent RC circuit model was adapted to derive the TPA coefficient \(\beta _{\mathrm{TPA}} (\omega )\) . The results showed that \(\beta _{\mathrm{TPA}} (\omega )\) varied from \(4.2 \times 10^{-4}\) to \(1.17 \times 10^{-3 }\)  cm/GW in the transparent wavelength region \(1.80<\lambda <1.36\,\upmu \) m of Si. The increasing tendency of \(\beta _{\mathrm{TPA}} (\omega )\) with the incident photon energy can be qualitatively interpreted as the photon energy increases from \(E_{\mathrm{ig}}/2\) to nearly \(E_{\mathrm{ig}}\) , the electrons excited from the valance band find an increasing availability of conduction band states. Comparing with the high-energy side transitions, the TPA coefficient in low-energy side is about 10 times too small. This can be attributed that the TPA transition in low-energy side is the process of photon-assisted electron transitions from valence to conduction band occurring between different points in k-space, while is direct transition in high-energy side.  相似文献   

3.
The primary goal of KamLAND is a search for the oscillation of \({\bar{\nu }}_\mathrm{e}\) ’s emitted from distant power reactors. The long baseline, typically 180 km, enables KamLAND to address the oscillation solution of the “solar neutrino problem” with \({\bar{\nu }}_{e} \) ’s under laboratory conditions. KamLAND found fewer reactor \({\bar{\nu }}_{e} \) events than expected from standard assumptions about \(\overline{\nu }_e\) propagation at more than 9 \(\sigma \) confidence level (C.L.). The observed energy spectrum disagrees with the expected spectral shape at more than 5 \(\sigma \) C.L., and prefers the distortion from neutrino oscillation effects. A three-flavor oscillation analysis of the data from KamLAND and KamLAND + solar neutrino experiments with CPT invariance, yields \(\Delta m_{21}^2 \) = [ \(7.54_{-0.18}^{+0.19} \times \) 10 \(^{-5}\) eV \(^{2}\) , \(7.53_{-0.18}^{+0.19} \times \) 10 \(^{-5}\) eV \(^{2}\) ], tan \(^{2}\theta _{12}\) = [ \(0.481_{-0.080}^{+0.092} \) , \(0.437_{-0.026}^{+0.029} \) ], and sin \(^{2}\theta _{13}\) = [ \(0.010_{-0.034}^{+0.033} \) , \(0.023_{-0.015}^{+0.015} \) ]. All solutions to the solar neutrino problem except for the large mixing angle region are excluded. KamLAND also demonstrated almost two cycles of the periodic feature expected from neutrino oscillation effects. KamLAND performed the first experimental study of antineutrinos from the Earth’s interior so-called geoneutrinos (geo \({\bar{\nu }}_{e} \) ’s), and succeeded in detecting geo \({\bar{\nu }}_{e} \) ’s produced by the decays of \(^{238}\) U and \(^{232}\) Th within the Earth. Assuming a chondritic Th/U mass ratio, we obtain \(116_{-27}^{+28} {\bar{\nu }}_{e}\) events from \(^{238}\) U and \(^{232}\) Th, corresponding a geo \({\bar{\nu }}_{e}\) flux of \(3.4_{-0.8}^{+0.8}\times \) 10 \(^{6}\) cm \(^{-2}\)  s \(^{-1}\) at the KamLAND location. We evaluate various bulk silicate Earth composition models using the observed geo \({\bar{\nu }}_{e} \) rate.  相似文献   

4.
Data accumulated recently for the exclusive measurement of the pp $ \rightarrow$ pp $ \pi^{+}_{}$ $ \pi^{-}_{}$ reaction at a beam energy of 0.793GeV using the COSY-TOF spectrometer have been analyzed with respect to possible events from the pp $ \rightarrow$ nn $ \pi^{+}_{}$ $ \pi^{+}_{}$ reaction channel. The latter is expected to be the only $ \pi$ $ \pi$ production channel, which contains no major contributions from resonance excitation close to threshold and hence should be a good testing ground for chiral dynamics in the $ \pi$ $ \pi$ production process. No single event has been found, which meets all conditions for being a candidate for the pp $ \rightarrow$ nn $ \pi^{+}_{}$ $ \pi^{+}_{}$ reaction. This gives an upper limit for the cross-section of 0.16μb (90% C.L.), which is more than an order of magnitude smaller than the cross-sections of the other two-pion production channels at the same incident energy.  相似文献   

5.
We consider the problem of existence of asymptotic observables in local relativistic theories of massive particles. Let ${\tilde{p}_1}$ and ${\tilde{p}_2}$ be two energy-momentum vectors of a massive particle and let ${\Delta}$ be a small neighbourhood of ${\tilde{p}_1 + \tilde{p}_2}$ . We construct asymptotic observables (two-particle Araki–Haag detectors), sensitive to neutral particles of energy-momenta in small neighbourhoods of ${\tilde{p}_1}$ and ${\tilde{p}_2}$ . We show that these asymptotic observables exist, as strong limits of their approximating sequences, on all physical states from the spectral subspace of ${\Delta}$ . Moreover, the linear span of the ranges of all such asymptotic observables coincides with the subspace of two-particle Haag–Ruelle scattering states with total energy-momenta in ${\Delta}$ . The result holds under very general conditions which are satisfied, for example, in ${\lambda{\phi}_{2}^{4}}$ . The proof of convergence relies on a variant of the phase-space propagation estimate of Graf.  相似文献   

6.
We consider the block band matrices, i.e. the Hermitian matrices $H_N$ , $N=|\Lambda |W$ with elements $H_{jk,\alpha \beta }$ , where $j,k \in \Lambda =[1,m]^d\cap \mathbb {Z}^d$ (they parameterize the lattice sites) and $\alpha , \beta = 1,\ldots , W$ (they parameterize the orbitals on each site). The entries $H_{jk,\alpha \beta }$ are random Gaussian variables with mean zero such that $\langle H_{j_1k_1,\alpha _1\beta _1}H_{j_2k_2,\alpha _2\beta _2}\rangle =\delta _{j_1k_2}\delta _{j_2k_1} \delta _{\alpha _1\beta _2}\delta _{\beta _1\alpha _2} J_{j_1k_1},$ where $J=1/W+\alpha \Delta /W$ , $\alpha < 1/4d$ . This matrices are the special case of Wegner’s $W$ -orbital models. Assuming that the number of sites $|\Lambda |$ is finite, we prove universality of the local eigenvalue statistics of $H_N$ for the energies $|\lambda _0|< \sqrt{2}$ .  相似文献   

7.
Newman’s measure for (dis)assortativity, the linear degree correlation coefficient $\rho _{D}$ , is reformulated in terms of the total number N k of walks in the graph with k hops. This reformulation allows us to derive a new formula from which a degree-preserving rewiring algorithm is deduced, that, in each rewiring step, either increases or decreases $\rho _{D}$ conform our desired objective. Spectral metrics (eigenvalues of graph-related matrices), especially, the largest eigenvalue $\lambda _{1}$ of the adjacency matrix and the algebraic connectivity $\mu _{N-1}$ (second-smallest eigenvalue of the Laplacian) are powerful characterizers of dynamic processes on networks such as virus spreading and synchronization processes. We present various lower bounds for the largest eigenvalue $\lambda _{1}$ of the adjacency matrix and we show, apart from some classes of graphs such as regular graphs or bipartite graphs, that the lower bounds for $\lambda _{1}$ increase with $\rho _{D}$ . A new upper bound for the algebraic connectivity $\mu _{N-1}$ decreases with $\rho _{D}$ . Applying the degree-preserving rewiring algorithm to various real-world networks illustrates that (a) assortative degree-preserving rewiring increases $\lambda _{1}$ , but decreases $\mu _{N-1}$ , even leading to disconnectivity of the networks in many disjoint clusters and that (b) disassortative degree-preserving rewiring decreases $\lambda _{1}$ , but increases the algebraic connectivity, at least in the initial rewirings.  相似文献   

8.
We study the evolution of phase-transition-generated cosmic magnetic fields coupled to the primeval cosmic plasma in the turbulent and viscous free-streaming regimes. The evolution laws for the magnetic energy density and the correlation length, both in the helical and the non-helical cases, are found by solving the autoinduction and Navier–Stokes equations in the mean-field approximation. Analytical results are derived in Minkowski spacetime and then extended to the case of a Friedmann universe with zero spatial curvature, both in the radiation- and the matter-dominated era. The three possible viscous free-streaming phases are characterized by a drag term in the Navier–Stokes equation which depends on the free-streaming properties of neutrinos, photons, or hydrogen atoms, respectively. In the case of non-helical magnetic fields, the magnetic intensity $B$ and the magnetic correlation length $\xi _B$ evolve asymptotically with the temperature, $T$ , as $B(T) \simeq \kappa _B (N_i v_i)^{\varrho _1} (T/T_i)^{\varrho _2}$ and $\xi _B(T) \simeq \kappa _\xi (N_i v_i)^{\varrho _3} (T/T_i)^{\varrho _4}$ . Here, $T_i$ , $N_i$ , and $v_i$ are, respectively, the temperature, the number of magnetic domains per horizon length, and the bulk velocity at the onset of the particular regime. The coefficients $\kappa _B$ , $\kappa _\xi $ , $\varrho _1$ , $\varrho _2$ , $\varrho _3$ , and $\varrho _4$ , depend on the index of the assumed initial power-law magnetic spectrum, $p$ , and on the particular regime, with the order-one constants $\kappa _B$ and $\kappa _\xi $ depending also on the cutoff adopted for the initial magnetic spectrum. In the helical case, the quasi-conservation of the magnetic helicity implies, apart from logarithmic corrections and a factor proportional to the initial fractional helicity, power-like evolution laws equal to those in the non-helical case, but with $p$ equal to zero.  相似文献   

9.
The process \(\pi ^0 \to \lambda _\gamma \bar \lambda _\gamma \) is investigated as an alternative to \(\pi ^0 \to v\bar v\) . It is shown that the experimental bound on the branching fraction for missing energy (in the form of \(\lambda _\gamma \bar \lambda _\gamma \) and/or \(v\bar v\) ) may be understood in terms of \(\pi ^0 \to \lambda _\gamma \bar \lambda _\gamma \) for the kinematically allowed photino mass, if the squark mass is >8 GeV.  相似文献   

10.
Radiative neutralino decay $\chi^{0}_{2}\longrightarrow\chi^{0}_{1}\gamma$ is studied in a Split Supersymmetric scenario, and compared with mSUGRA and MSSM. This one-loop process has a transition amplitude which is often quite small, but it has the advantage of providing a very clear and distinct signature: electromagnetic radiation plus missing energy. In Split Supersymmetry this radiative decay is in direct competition with the tree-level three-body decay $\chi^{0}_{2}\longrightarrow\chi^{0}_{1}f\bar{f}$ , and we obtain large values for the branching ratio $B(\chi^{0}_{2}\longrightarrow\chi^{0}_{1}\gamma)$ which can be close to unity in the region M 2M 1, something already seen in the MSSM. Furthermore, the values for the radiative and the tree-level neutralino decay branching ratios have a strong dependence on the logarithm of the split supersymmetric scale $\widetilde{m}$ , which otherwise is very difficult to infer from experimental observables.  相似文献   

11.
12.
The cosmological model consisting of a nonlinear magnetic field obeying the Lagrangian \(\mathcal {L}= \gamma F^{\alpha },\, F\) being the electromagnetic invariant, coupled to a Robertson-Walker geometry is tested with observational data of Type Ia Supernovae, Long Gamma-Ray Bursts and Hubble parameter measurements. The statistical analysis show that the inclusion of nonlinear electromagnetic matter is enough to produce the observed accelerated expansion, with not need of including a dark energy component. The electromagnetic matter with abundance \(\varOmega _B\) , gives as best fit from the combination of all observational data sets \(\varOmega _B=0.562^{+0.037}_{-0.038}\) for the scenario in which \(\alpha =-1, \varOmega _B=0.654^{+0.040}_{-0.040}\) for the scenario with \(\alpha =-1/4\) and \(\varOmega _B=0.683^{+0.039}_{-0.043}\) for the one with \(\alpha =-1/8\) . These results indicate that nonlinear electromagnetic matter could play the role of dark energy, with the theoretical advantage of being a mensurable field.  相似文献   

13.
In this paper, we introduce the bulk viscosity in the formalism of modified gravity theory in which the gravitational action contains a general function \(f(R,T)\) , where \(R\) and \(T\) denote the curvature scalar and the trace of the energy–momentum tensor, respectively, within the framework of a flat Friedmann–Robertson–Walker model. As an equation of state for a prefect fluid, we take \(p=(\gamma -1)\rho \) , where \(0 \le \gamma \le 2\) and a viscous term as a bulk viscosity due to the isotropic model, of the form \(\zeta =\zeta _{0}+\zeta _{1}H\) , where \(\zeta _{0}\) and \(\zeta _{1}\) are constants, and \(H\) is the Hubble parameter. The exact non-singular solutions to the corresponding field equations are obtained with non-viscous and viscous fluids, respectively, by assuming a simplest particular model of the form of \(f(R,T) = R+2f(T)\) , where \(f(T)=\alpha T\) ( \(\alpha \) is a constant). A big-rip singularity is also observed for \(\gamma <0\) at a finite value of cosmic time under certain constraints. We study all possible scenarios with the possible positive and negative ranges of \(\alpha \) to analyze the expansion history of the universe. It is observed that the universe accelerates or exhibits a transition from a decelerated phase to an accelerated phase under certain constraints of \(\zeta _0\) and \(\zeta _1\) . We compare the viscous models with the non-viscous one through the graph plotted between the scale factor and cosmic time and find that the bulk viscosity plays a major role in the expansion of the universe. A similar graph is plotted for the deceleration parameter with non-viscous and viscous fluids and we find a transition from decelerated to accelerated phase with some form of bulk viscosity.  相似文献   

14.
Magnetism in Cu-doped, Cu \(\rm _{Si}\) –V \(\rm _{Si}\) codoped, or Cu \(\rm _{Si}\) –V \(\rm _{C}\) codoped 6H-SiC are investigated using the first principle. The total density of states for the ferromagnetic Cu \(\rm _{Si}\) at doping concentration of 0.926 at. \(\%\) shows half-metallic behavior, which leads to the total magnetic moment of 2.84  \(\rm \mu _{B}\) per supercell. The total magnetic moment increases with increasing Cu content. The long-range ferromagnetic interaction between Cu atoms can be attributed to the C-mediated double exchange through the strong \(3d\) ? \(2p\) interaction between Cu and neighboring C ones. It is important to note that both V \(\rm _{Si}\) and V \(\rm _{C}\) play a negative role in ferromagnetic coupling between Cu ions. So, to obtain a larger magnetic moment from Cu-doped 6H–SiC, we should try to avoid the appearance of V \(\rm _{Si}\) and V \(\rm _{C}\) during the process of sample preparation. Our theoretical calculations give a valuable insight on how to get a large magnetic moment from Cu-doped 6H–SiC.  相似文献   

15.
We investigate the asymptotic decrease of the Wannier functions for the valence and conduction band of graphene, both in the monolayer and the multilayer case. Since the decrease of the Wannier functions is characterised by the structure of the Bloch eigenspaces around the Dirac points, we introduce a geometric invariant of the family of eigenspaces, baptised eigenspace vorticity. We compare it with the pseudospin winding number. For every value $n \in \mathbb {Z}$ of the eigenspace vorticity, we exhibit a canonical model for the local topology of the eigenspaces. With the help of these canonical models, we show that the single band Wannier function $w$ satisfies $|w(x)| \le {\mathrm {const}} \cdot |x|^{-2}$ as $|x| \rightarrow \infty $ , both in monolayer and bilayer graphene.  相似文献   

16.
Consequences of the existence of an invariant (necessarily indefinite) non-degenerate inner product for an indecomposable representation π of a groupG on a space \(\mathfrak{H}\) are studied. If π has an irreducible subrepresentation π1 on a subspace \(\mathfrak{H}_1 \) , it is shown that there exists an invariant subspace \(\mathfrak{H}_2 \) of \(\mathfrak{H}\) containing \(\mathfrak{H}_1 \) and satisfying the following conditions: (1) the representation π 1 # =π mod \(\mathfrak{H}_2 \) on \(\mathfrak{H}\) mod \(\mathfrak{H}_2 \) is conjugate to the representation (π1, \(\mathfrak{H}_1 \) ), (2) \(\mathfrak{H}_1 \) is a null space for the inner product, and (3) the induced inner product on \(\mathfrak{H}_2 \) mod \(\mathfrak{H}_1 \) is non-degenerate and invariant for the representation $$\pi _2 = (\pi _2 |_{\mathfrak{H}_2 } )\bmod \mathfrak{H}_1 ,$$ a special example being the Gupta-Bleuler triplet for the one-particle space of the free classical electromagnetic field with \(\mathfrak{H}_1 \) =space of longitudinal photons and \(\mathfrak{H}_2 \) =the space defined by the subsidiary condition.  相似文献   

17.
Spectral crosstalk suppressing design of two-color HgCdTe medium-wave/long-wave (MW/LW) \(\hbox {n}^{+}\) \(\hbox {p}_{1}\) \(\hbox {P}_{2}\) \(\hbox {P}_{3}\) \(\hbox {N}^{+}\) infrared focal plane arrays (IRFPAs) detector functioning in simultaneous mode is carried out in this study, using Crosslight Technology Computer Aided Design (TCAD) software. A compositional barrier of \(\hbox {P}_{2}\) -region sandwiched between LW absorption layer of \(\hbox {p}_{1}\) -region and MW absorption layer of \(\hbox {P}_{3}\) -region is designed to suppress spectral crosstalk. MW-to-LW crosstalk can be significantly suppressed to 2.1 % while LW-to-MW crosstalk can be maintained less than 1 % by integrating an optimized compositional barrier.  相似文献   

18.
We present a study of \(B\bar B\) meson pair production inπ ? interactions at 140, 194 and 286 GeV incident pion energy. At 286 GeV, where we have the best statistics, we find a model-dependent \(B\bar B\) production cross-section \(\sigma _{BB} = 14_{ - 6}^{ + 7} nb/nucleon\) .  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号