首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Microstructure and conduction of ceramic composites Bi2CuO4 + xBi2O3 (x = 5, 10, 15, 20 wt %) near the eutectic melting point (770°C) are studied. Bismuth oxide, initially randomly distributed over the ceramics bulk, after quenching from temperatures exceeding the eutectic melting point, becomes localized at triple junctions and grain boundaries in Bi2CuO4, which is caused by wetting grain boundaries and forming a liquid-channel structure. The jumpwise change in the composites’ conductivity near 730 and 770°C caused by polymorphic transformation of Bi2O3 and the eutectic melting with simultaneous formation of a liquid-channel structure. Transport numbers of the oxygen ion are measured at 770°C by coulomb-volumetric method. The conduction by oxygen ions increases in the composites with decreasing average size of Bi2CuO4 crystallites.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 596–601.Original Russian Text Copyright © 2005 by Lyskov, Metlin, Belousov, Tret’yakov.  相似文献   

2.
Electrical conductivity in the monoclinic Li2TiO3, cubic Li1.33Ti1.67O4, and in their mixture has been studied by impedance spectroscopy in the temperature range 20–730 °C. Li2TiO3 shows low lithium ion conductivity, σ300≈10–6 S/cm at 300 °C, whereas Li1.33Ti1.67O4 has 3×10–8 at 20 °C and 3×10–4 S/cm at 300 °C. Structural properties are used to discuss the observed conductivity features. The conductivity dependences on temperature in the coordinates of 1000/T versus logeT) are not linear, as the conductivity mechanism changes. Extrinsic and intrinsic conductivity regions are observed. The change in the conductivity mechanism in Li2TiO3 at around 500–600 °C is observed and considered as an effect of the first-order phase transition, not reported before. Formation of solid solutions of Li2– x Ti1+ x O3 above 900 °C significantly increases the conductivity. Irradiation by high-energy (5 MeV) electrons causes defects and the conductivity in Li2TiO3 increases exponentially. A dose of 144 MGy yields an increase in conductivity of about 100 times at room temperature. Electronic Publication  相似文献   

3.
The conductivity and transport number of oxygen ions of Bi2O3-(10, 30, 50) vol % NiO composites are measured using the four-probe and coulomb-volumetric methods at various temperatures. It is shown that the Bi2O3-50 vol % NiO composite exhibits a high mixed ionic-electronic conductivity in the temperature range from 730 to 800°C.  相似文献   

4.
Highly compact (99%) solid electrolyte Ce0.8Gd0.2O1.9 with submicron (0.3 μm) grains is synthesized. The dilatometric (20–850°C) and conductivity (180–350°C) measurements are performed on the electrolyte in air and as a function of the partial oxygen pressure \(p_{O_2 } \) (0.21?1×10?25 atm) at 600, 700, and 800°C. An inflection is found in the temperature dependences of the thermal coefficient of linear expansion and conductivity (impedance measurements) at ~230°C, which is the evidence for a phase transition. The activation energies for conduction in the grain bulk and boundaries differ only slightly, indicating that the grain boundaries’ resistance is caused not by the precipitation of the second phase at the boundaries, but most probably by the presence of intergranular nanopores. The dilatometric measurements confirm a significant increase in the linear dimensions of Ce0.8Gd0.2O1.9 in the reducing atmospheres with a parallel increase in its electron conductivity. The electron conductivity and specific elongation increase proportionally to \(p_{O_2 }^{ - 1/4} \) at all temperatures. The \(p_{O_2 } \) values, at which the transport numbers of ions t i = 0.5, are determined. They are 10?22.5, 10?20, and 10?18 atm at 600, 700, and 800°C, respectively.  相似文献   

5.
A 20% GdO1.5 doped ceria solid solution with a small amount of MnO2 doping (≤5% molar ratio) was prepared via the mixed oxide method from high-purity commercial powders with grain size around 0.2–0.5 μm. X-ray diffraction analysis indicated that all the samples exhibited the fluorite structure, and no new phase was found. The data from dilatometeric measurements and scanning electron microscopy observations revealed that 1% Mn doping reduced the sintering temperature by over 150 °C, and enhanced the densification and grain growth. Mn doping has little effect on grain interior conductivity, but a marked deterioration in grain boundary behavior is observed. This leads to a lower total conductivity in comparison with the undoped Ce0.8Gd0.2O2–δ. Therefore, for solid oxide fuel cells (SOFCs) with Mn-containing compounds as electrodes, optimization of electrode fabrication conditions is needed to prevent the formation of a lower conductivity layer at the electrode/electrolyte interface since Mn will diffuse from the electrode side to the electrolyte during fabrication and operation of SOFCs. Electronic Publication  相似文献   

6.
Composites ZrO2-(Bi2CuO4+ 20 wt % Bi2O3) (50–80 vol % ZrO2) are synthesized and their physicochemical properties are studied. It is demonstrated that the composites comprise triple-phase mixtures of ZrO2 of a monoclinic modification, Bi2CuO4, and solid solution Bi2?x Zr x O3 + x/2 and retain their mechanical strength up to 800°C. Impedance spectroscopy is used to examine their electroconductivity at 700–800°C in the interval of partial oxygen pressures extending from 37 to 2.1 × 104 Pa. Contributions made by electronic and ionic constituents to their overall conductivity are evaluated. The best specimens’ conductivity is ~0.01 S cm?1, with the electronic and ionic transport numbers nearly equal. The composite consisting of 50 vol % ZrO2 and 50 vol % (Bi2CuO4 + 20 wt % Bi2CuO4) is tested in the role of an oxygen-separating membrane. The selective flux of oxygen in the temperature interval 750–800°C amounts to (2.2–6.3) × 10?8 mol cm?2 s?1, testifying that these materials may be used as gas-separating membranes.  相似文献   

7.
Transport properties of ionic salt CsH5(PO4)2 are studied by the impedance method. The salt’s bulk conductivity ranges from 10?8 to 10?4 S cm?1 in the temperature interval 90 to 145°C. The apparent activation energy is high (1.6–2.0 eV). The conductivity is slightly anisotropic: it is maximum in the [001] direction and minimum in the [100] direction (~5.6 and 1 times × 10?6 S cm?1, respectively, at 130°C). The conductivity of polycrystalline samples is higher by 1–2 orders of magnitude, and the activation energy drops to 1.05 eV due to the formation of a pseudoliquid layer with a high proton mobility at the intercrystallite boundary. The salt’s thermodynamic properties are examined by differential scanning calorimetry and thermogravimetry. No phase transitions are discovered in the salt up to the melting point (151.6°C), with the melting enthalpy equal to ~34 kJ mol?1. The crystallization occurs at lower temperatures (107°C) and the crystallization enthalpy (?18 kJ mol?1) is lower than the melting enthalpy. The melting is accompanied by slow decomposition of the salt. Factors affecting the proton transport in the salt are analyzed.  相似文献   

8.
A material based on lanthanum orthophosphate LaPO4 with inclusion of particles of lanthanum metaphosphate LaP3O9 was synthesized. The influence of the process parameters of the synthesis on the structure and properties of the material was determined. Heat treatment of the coprecipitated lanthanum phosphates at 700°C leads to the formation of a nanopowder with the LaPO4crystallite size of approximately 17 nm. Heat treatment of the nanopowder at temperatures from 1100 to 1500°C yields compact materials based on the LaPO4–LaP3O9 system. The heat treatment of the nanopowder at 1100°C leads to a sharp decrease in the porosity of the material (to ~5%) at insignificant grain growth (200–400 nm); under these conditions, the thermal conductivity [λ(25°C) = 3.2 W m–1 K–1], microhardness [Hv(25°C) = 4.6 ± 0.4 GPa], Young’s modulus [E(25°C) = 132 ± 9 GPa], and cracking resistance [K1c(25°C) = 1.6 ± 0.1 MPa m1/2] pass through maxima. The thermal expansion coefficient of the material depends on the heat treatment conditions only slightly and amounts to (8.2 ± 0.2) × 10–6 K–1.  相似文献   

9.
Solid solutions based on cesium monogallate CsGaO2 are synthesized in the Ga2O3-TiO2-Cs2O system. Their crystalline structure and also temperature and concentration conductivity dependences are studied. The cesium cation character of conductivity is confirmed. The most conducting samples contain an excess of cesium oxide and have the structure of high-temperature γ-modification of KAlO2. Their specific conductivity is (5.0–6.7) × 10?3 S cm?1 at 400 °C, (2.5–5.0) × 10?2 S cm?1 at 700°C at the activation energy of 33–35 kJ/mol?1.  相似文献   

10.
Nanocrystalline La2Mo2O9 oxide-ion conductor has been successfully synthesized by microwave-assisted combustion method within a very short time duration using aspartic acid as the newer fuel in a domestic microwave oven. The synthesized nanocrystalline powder showed good sinterability and reached more than 97% of theoretical density even at low temperature of 800 °C for 5 h. The sintered La2Mo2O9 sample exhibited a conductivity of 0.159 S/cm in air at 750 °C.  相似文献   

11.
With the aim of creating an inert matrix for composite in the (1 ? x) CsH2PO4 ? xSiO2 system, the surface of finely divided dioxide is modified and matrices with more acid centers are produced. Physicochemical properties of composite systems on the basis of these are studied. The role played by acid centers in the formation of more stable and better conductive composite systems in the temperature interval 150 to 250°C is demonstrated. The conductivity of composites based on silicon dioxide modified with CsHSO4 or H3PO4 at 130–230°C is shown to exceed that of the initial phase CsH2PO4 and the composite systems based on uniformly porous silicon dioxide with the surface acidity pH ~7 studied previously. The composites are of interest for further research. Compositions of phases under formation and conditions for their existence are determined.  相似文献   

12.
The effect of partial substitution of Zr4+ ions for Ge4+ ions in highly conducting lithium-cationic solid electrolyte Li3.75Ge0.75P0.25O4 is studied. It is found that the introduction of zirconium ions considerably raises the conductivity of basic electrolyte in the high-temperature range. For the optimal composition, the conductivity is 2.82 × 10−1 S cm−1 at 400°C and 1.55 S cm−1 at 700°C. Possible reasons for the effects are discussed.  相似文献   

13.
Triple molybdates of the compositions Rb5LnHf(MoO4)6 (5:1:2) and Rb2LnHf2(MoO4)6.5 (2:1:4), Ln = Ce-Lu, were prepared by solid-phase reactions. The temperature dependence of the electrical conductivity of the compounds Rb5LnHf(MoO4)6 (5:1:2) at 200–500°C was studied.  相似文献   

14.
Lithium-vanadium oxide with the formal composition Li6V5O15, uniform microsctructure, and the particle size of 100 nm is synthesized by a solution method. The synthesized compound is characterized by the methods of X-ray diffraction analysis, Raman spectroscopy, and synchronous thermal analysis. The total electric conductivity is measured by the method of impedance spectroscopy and its electronic component is estimated by dc method. In the temperature range of 200–400°C, Li6V5O15 represents a mixed electronic- ionic conductor with predomination of the ionic component and is thermally stable up to 550°С. Preliminary tests of a laboratory model of electrochemical cell Li|LiPF6|Li6V5O15 are carried out.  相似文献   

15.
The subsolidus region of the Li2O-MgO-B2O3 system has been studied by X-ray powder diffraction and differential thermal analysis. Isothermal sections at 500–550 and 650–700°C have been designed. The following complex borates have been found to form: at 500–550°C, Li2MgB2O5 and LiMgBO3 are formed; at 650–700°C, a new phase Li4MgB2O5 is formed along with LiMgBO3; and at 5500–600°, Li2MgB2O5 is formed.  相似文献   

16.
The effect of chemical composition to ionic conductivity and activation energy of vitreous solid electrolytes (SE) based on Li2O-P2O5-LiF system (Li2O ≥ 45.4 mol %) was detected. The temperature effect to conductivity and activation energy was studied. An original technology was designed to prepare vitreous SEs in Li2O-P2O5-LiF system containing up to 20 mol % LiF and characterized with ionic conductivity up to 4.4 × 10?7 S cm?1 (24°C) and activation energy about 0.567 eV. The synthesized materials are characterized with high X-ray amorphism and technological performance.  相似文献   

17.
New cesium-conducting solid electrolytes based on cesium monoferrite in the Fe2O3-TiO2-Cs2O system are synthesized and studied. It is found that the introduction of titanium dioxide significantly reduces the electronic component of conductivity, which prevails in pure CsFeO2, and raises the ionic conductivity. The latter becomes predominant with increasing concentration of TiO2. The effect of dimensional factor on the characteristics of electrolyte is shown. The optimal compositions studied have very high cesium-cationic conductivity: it is above 10−2 S cm −1 at 300°C.  相似文献   

18.
The phase diagrams of the systems KF-K2TaF7 and KF-Ta2O5 were determined using the thermal analysis method. The phase diagrams were described by suitable thermodynamic model. In the system KF-K2TaF7 eutectic points at x KF=0.716 and t=725.4°C and at x KF=0.214 and t=712.2°C has been calculated. It was suggested that K2TaF7 melts incongruently at around 743°C forming two immiscible liquids. The system KF-Ta2O5 have been measured up to 8 mol% of Ta2O5. The eutectic point was estimated to be at x KF∼0.9 and t∼816°C. The formation of KTaO3 and K3TaO2F4 compounds has been observed in the solidified samples.  相似文献   

19.
The solid-state synthesis of undoped K0.5Na0.5NbO3 (KNN) and KNN doped with 1, 2 and 6 mol% Sr, from potassium, sodium and strontium carbonates with niobium pentoxide, was studied using thermal analysis and in situ high-temperature X-ray diffraction (HT-XRD). The thermogravimetry and the differential thermal analyses with evolved-gas analyses showed that the carbonates, which were previously reacted with the moisture in the air to form hydrogen carbonates, partly decomposed when heated to 200 °C. In the temperature interval where the reaction was observed, i.e., between 200 and 750 °C, all the samples exhibited the main mass loss in two steps. The first step starts at around 400 °C and finishes at 540 °C, and the second step has an onset at 540 °C and finishes with the end of the reaction between 630 and 675 °C, depending on the particle size distribution of the Nb2O5 precursor. According to the HT-XRD analysis, the perovskite phase is formed at 450 °C for all the samples, regardless of the Sr content. The formation of a polyniobate phase with a tetragonal tungsten bronze structure was detected by HT-XRD in the KNN with the largest amount of Sr dopant, i.e., 6 mol% of Sr, at 600 °C.  相似文献   

20.
Intermetallic compounds Al13Co4, Al13Fe4, and Al13Co2Fe2 were obtained by solid-phase synthesis in air at temperatures below 600°C using precursor metals subjected to mechanochemical preactivation. The phase composition of the synthesized aluminides and composites Al13Co4/SiO2 and Al13Fe4/SiO2 was analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号