首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concepts of conditioning have long been important in numerical work on solving systems of equations, but in recent years attempts have been made to extend them to feasibility conditions, optimality conditions, complementarity conditions and variational inequalities, all of which can be posed as solving ‘generalized equations’ for set-valued mappings. Here, the conditioning of such generalized equations is systematically organized around four key notions: metric regularity, subregularity, strong regularity and strong subregularity. Various properties and characterizations already known for metric regularity itself are extended to strong regularity and strong subregularity, but metric subregularity, although widely considered, is shown to be too fragile to support stability results such as a radius of good behavior modeled on the Eckart–Young theorem.  相似文献   

2.
The paper concerns the study of variational systems described by parameterized generalized equations/variational conditions important for many aspects of nonlinear analysis, optimization, and their applications. Focusing on the fundamental properties of metric regularity and Lipschitzian stability, we establish various qualitative and quantitative relationships between these properties for multivalued parts/fields of parametric generalized equations and the corresponding solution maps for them in the framework of arbitrary Banach spaces of decision and parameter variables.  相似文献   

3.
The paper mostly concerns applications of the generalized differentiation theory in variational analysis to Lipschitzian stability and metric regularity of variational systems in infinite-dimensional spaces. The main tools of our analysis involve coderivatives of set-valued mappings that turn out to be proper extensions of the adjoint derivative operator to nonsmooth and set-valued mappings. The involved coderivatives allow us to give complete dual characterizations of certain fundamental properties in variational analysis and optimization related to Lipschitzian stability and metric regularity. Based on these characterizations and extended coderivative calculus, we obtain efficient conditions for Lipschitzian stability of variational systems governed by parametric generalized equations and their specifications.  相似文献   

4.
The metric regularity of multifunctions plays a crucial role in modern variational analysis and optimization. This property is a key to study the stability of solutions of generalized equations. Many practical problems lead to generalized equations associated to the sum of multifunctions. This paper is devoted to study the metric regularity of the sum of multifunctions. As the sum of closed multifunctions is not necessarily closed, almost all known results in the literature on the metric regularity for one multifunction (which is assumed usually to be closed) fail to imply regularity properties of the sum of multifunctions. To avoid this difficulty, we use an approach based on the metric regularity of so-called epigraphical multifunctions and the theory of error bounds to study the metric regularity of the sum of two multifunctions, as well as some related important properties of variational systems. Firstly, we establish the metric regularity of the sum of a regular multifunction and a pseudo-Lipschitz multifunction with a suitable Lipschitz modulus. These results subsume some recent results by Durea and Strugariu. Secondly, we derive coderivative characterizations of the metric regularity of epigraphical multifunctions associated with the sum of multifunctions. Applications to the study of the behavior of solutions of variational systems are reported.  相似文献   

5.
This paper mainly concerns the study of a large class of variational systems governed by parametric generalized equations, which encompass variational and hemivariational inequalities, complementarity problems, first-order optimality conditions, and other optimization-related models important for optimization theory and applications. An efficient approach to these issues has been developed in our preceding work (Aragón Artacho and Mordukhovich in Nonlinear Anal 72:1149–1170, 2010) establishing qualitative and quantitative relationships between conventional metric regularity/subregularity and Lipschitzian/calmness properties in the framework of parametric generalized equations in arbitrary Banach spaces. This paper provides, on one hand, significant extensions of the major results in op.cit. to partial metric regularity and to the new hemiregularity property. On the other hand, we establish enhanced relationships between certain strong counterparts of metric regularity/hemiregularity and single-valued Lipschitzian localizations. The results obtained are new in both finite-dimensional and infinite-dimensional settings.  相似文献   

6.
In this paper we consider a convex-composite generalized constraint equation in Banach spaces. Using variational analysis technique, in terms of normal cones and coderivatives, we first establish sufficient conditions for such an equation to be metrically subregular. Under the Robinson qualification, we prove that these conditions are also necessary for the metric subregularity. In particular, some existing results on error bound and metric subregularity are extended to the composite-convexity case from the convexity case.  相似文献   

7.
We consider a special form of parametric generalized equations arising from electronic circuits with AC sources and study the effect of perturbing the input signal on solution trajectories. Using methods of variational analysis and strong metric regularity property of an auxiliary map, we are able to prove the regularity properties of the solution trajectories inherited by the input signal. Furthermore, we establish the existence of continuous solution trajectories for the perturbed problem. This can be achieved via a result of uniform strong metric regularity for the auxiliary map.  相似文献   

8.
Some properties, connected with recent generalizations of the classic notion of Lipschitz continuity for multifunctions, are investigated with reference to variational systems, that is to solution maps associated to parametrized generalized equations. The latter ones are a convenient framework to address several questions, mainly related to the stability and sensitivity analysis, arising in mathematical programming, optimal control, equilibrium and variational inequality theory. Global and local criteria for metric regularity and Lipschitz-likeness of variational systems are obtained. Some applications to the exact penalization of mathematical programs with equilibrium constraints and to the Lipschitzian stability of fixed points for multivalued contractions are then considered.  相似文献   

9.
In this paper solvability and Lipschitzian stability properties for a special class of nonsmooth parametric generalized systems defined in Banach are studied via a variational analysis approach. Verifiable sufficient conditions for such properties to hold under scalar quasidifferentiability assumptions are formulated by combining *-difference and Demyanov difference of convex compact subsets of the dual space with classic quasidifferential calculus constructions. Applications to the formulation of sufficient conditions for metric regularity/open covering of nonsmooth maps, along with their employment in deriving optimality conditions for quasidifferentiable extremum problems, as well as an application to the study of semicontinuity of the optimal value function in parametric optimization are discussed. In memory of Aleksandr Moiseevich Rubinov (1940–2006).  相似文献   

10.
综述了集值映射的某些概念,例如度量正则性、伪Lipschitz性质(Aubin性质)、度量次正则性和Calm性质和这些概念的相互关系以及某些判据.也给出了他们在变分方程解的鲁棒Lipschitz稳定性、约束优化问题的最优性条件、集合族的线性正则性质和广义方程迭代过程的收敛性.  相似文献   

11.
S. M. Robinson published in 1980 a powerful theorem about solutions to certain “generalized equations” corresponding to parameterized variational inequalities which could represent the first-order optimality conditions in nonlinear programming, in particular. In fact, his result covered much of the classical implicit function theorem, if not quite all, but went far beyond that in ideas and format. Here, Robinson’s theorem is viewed from the perspective of more recent developments in variational analysis as well as some lesser-known results in the implicit function literature on equations, prior to the advent of generalized equations. Extensions are presented which fully cover such results, translating them at the same time to generalized equations broader than variational inequalities. Robinson’s notion of first-order approximations in the absence of differentiability is utilized in part, but even looser forms of approximation are shown to furnish significant information about solutions.  相似文献   

12.
In this paper we consider systems of equations which are defined by nonsmooth functions of a special structure. Functions of this type are adapted from Kojima's form of the Karush–Kuhn–Tucker conditions for C2—optimization problems. We shall show that such systems often represent conditions for critical points of variational problems (nonlinear programs, complementarity problems, generalized equations, equilibrium problems and others). Our main purpose is to point out how different concepts of generalized derivatives lead to characterizations of different Lipschitz properties of the critical point or the stationary solution set maps.  相似文献   

13.
In this paper we study some properties of sets, set-valued mappings, and extended-real-valued functions unified under the name of “sequential normal compactness.” These properties automatically hold in finite-dimensional spaces, while they play a major role in infinite-dimensional variational analysis. In particular, they are essential for calculus rules involving generalized differential constructions, for stability and metric regularity results and their broad applications, for necessary optimality conditions in constrained optimization and optimal control, etc. This paper contains principal results ensuring the preservation of sequential normal compactness properties under various operations over sets, set-valued mappings, and functions.  相似文献   

14.
This paper focuses on the metric regularity of a positive order for generalized equations. More concretely, we establish verifiable sufficient conditions for a generalized equation to achieve the metric regularity of a positive order at its a given solution. The provided conditions are expressed in terms of the Fréchet coderivative/or the Mordukhovich coderivative/or the Clarke one of the corresponding multifunction formulated the generalized equation. In addition, we show that such sufficient conditions turn out to be also necessary for the metric regularity of a positive order of the generalized equation in the case where the multifunction established the generalized equation is closed and convex.  相似文献   

15.
《Optimization》2012,61(5):1017-1035
ABSTRACT

The purpose of this paper is to study a class of semilinear differential variational systems with nonlocal boundary conditions, which are obtained by mixing semilinear evolution equations and generalized variational inequalities. First we prove essential properties of the solution set for generalized variational inequalities. Then without requiring any compactness condition for the evolution operator or for the nonlinear term, two existence results for mild solutions are established by applying a weak topology technique combined with a fixed point theorem.  相似文献   

16.
We study the existence of maximum and minimum solutions to generalized variational inequalities on Banach lattices. The main tools of analysis are the variational characterization of the generalized metric projection operator and order-theoretic fixed point theory.  相似文献   

17.
This paper mainly deals with the study of directional versions of metric regularity and metric subregularity for general set-valued mappings between infinite-dimensional spaces. Using advanced techniques of variational analysis and generalized differentiation, we derive necessary and sufficient conditions, which extend even the known results for the conventional metric regularity. Finally, these results are applied to non-smooth optimization problems. We show that that at a locally optimal solution M-stationarity conditions are fulfilled if the constraint mapping is subregular with respect to one critical direction and that for every critical direction a M-stationarity condition, possibly with different multipliers, is fulfilled.  相似文献   

18.
We develop a variational approach in order to study qualitative properties of nonautonomous parabolic equations. Based on the method of product integrals, we discuss invariance properties and ultracontractivity of evolution families in Hilbert space. Our main results give sufficient conditions for the heat kernel of the evolution family to satisfy Gaussian-type bounds. Along the way, we study examples of nonautonomous equations on graphs, metric graphs, and domains.  相似文献   

19.
The paper is devoted to new applications of advanced tools of modern variational analysis and generalized differentiation to the study of broad classes of multiobjective optimization problems subject to equilibrium constraints in both finite-dimensional and infinite-dimensional settings. Performance criteria in multiobjective/vector optimization are defined by general preference relationships satisfying natural requirements, while equilibrium constraints are described by parameterized generalized equations/variational conditions in the sense of Robinson. Such problems are intrinsically nonsmooth and are handled in this paper via appropriate normal/coderivative/subdifferential constructions that exhibit full calculi. Most of the results obtained are new even in finite dimensions, while the case of infinite-dimensional spaces is significantly more involved requiring in addition certain “sequential normal compactness” properties of sets and mappings that are preserved under a broad spectrum of operations.  相似文献   

20.
The paper contains results concerning the development of a new approach to the proof of existence theorems for generalized solutions to systems of quasilinear conservation laws. This approach is based on reducing the search for a generalized solution to analyzing extremal properties of a certain set of functionals and is referred to as a variational approach. The definition of a generalized solution can be naturally reformulated in terms of the existence of critical points for a set of functionals, which is convenient within the approach proposed. The variational representation of generalized solutions, which was earlier known for Hopf-type equations, is generalized to systems of quasilinear conservation laws. The extremal properties of the functionals corresponding to systems of conservation laws are described within the variational approach, and a strategy for proving the existence theorem is outlined. In conclusion, it is shown that the variational approach can be generalized to the two-dimensional case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号