首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Two deterministic schemes are put forward to preparing an arbitrary four-qubit cluster-type state remotely by using two Bell states as quantum channel. The coefficients of the prepared states can be not only real, but also complex. To accomplish the schemes, we introduce some novel sets of ingenious measurement basis vectors. Especially, for complex coefficients case, we give two different forms schemes. The receiver will reconstruct the initial state by means of some appropriate unitary operations. The outstanding advantage of the present schemes is that the success probability in all the considered remote state preparation (RSP) can reach 1.

  相似文献   

2.
本文提出两种协议来实现远程态制备.第一个方案描述基于两体最大纠缠信道,如何远程制备四能级系统中的任意单粒子量子态.然后由第一个方案概括出第二个方案,即在四能级系统中实现两粒子纠缠态的远程制备方案.在两种制备的过程中, 需要分别实施一个单粒子投影测量和一个两粒子投影测量.结果表明,两个方案都能以大于25%的几率忠信地实现.此外,对于两类特殊态,即赤道态和实数态,其成功概率大大提高至100%,此时我们几率的协议转变为决定性的协议.  相似文献   

3.
提出了两套三粒子纠缠态的纯化方案.第一个方案选择部分纠缠GHZ态作为量子通道,利用具有一个控制位和一个靶位的非局域控制非门操作和采用集体么正操作及适当地制备三粒子A,B和C的初始态,可以以最佳几率2|β|2获得最大三粒子纠缠态.第二个方案选择EPR对作为量子通道,通过利用具有一个控制位和两个靶位的非局域控制非门操作和采用集体么正操作及适当地制备三粒子A,B和C的初始态,可以以与第一个方案相同的几率获得最大三粒子纠缠态.两个方案都可以推广到N粒子纠缠态的纯化.  相似文献   

4.
本文提出两种协议来实现远程态制备.第一个方案描述基于两体最大纠缠信道,如何远程制备四能级系统中的任意单粒子量子态.然后由第一个方案概括出第二个方案,即在四能级系统中实现两粒子纠缠态的远程制备方案.在两种制备的过程中, 需要分别实施一个单粒子投影测量和一个两粒子投影测量.结果表明,两个方案都能以大于25%的几率忠信地实现.此外,对于两类特殊态,即赤道态和实数态,其成功概率大大提高至100%,此时我们几率的协议转变为决定性的协议.  相似文献   

5.
The entanglement of two qubits is investigated in the range of their ultra-strongly coupling with a quantum oscillator. The two qubits are initially in four Bell states and they are under the control mechanism of the coherent state of the quantum oscillator. There are four parameters: the average number of the coherent state, the ultra-strong coupling strength, the ratio of two frequencies of qubit and oscillator, and the inter-interaction coupling of the two qubits in the mechanism, and they all are influential parameters on the entanglement of the two qubits. One Bell state |0>is easyily kept and is trivial case. The novel results show that there is one state |I0> among the other three Bell states which the entanglement of the two qubits could be almost completely preserved. The possibility is made into reality by the appropriate choice of the four influential parameters. We give two different schemes to choose the respective parameters to maintain the entanglment of |I0> almost undiminished. The results will be useful for the quantum information process.  相似文献   

6.
We present two schemes for perfect cloning unknown two-qubit and general two-qubit entangled states with assistance from two state preparers, respectively. In the schemes, the sender wish to teleport an unknown two-qubit (or general two-qubit) entangled state which from two state preparers to a remote receiver, and then create a perfect copy of the unknown state at her place. The schemes include two stages. The first stage of the schemes requires usual teleportation. In the second stage, to help the sender realize the quantum cloning, two state preparers perform two-qubit projective measurements on their own qubits which from the sender, then the sender can acquire a perfect copy of the unknown state. To complete the assisted cloning schemes, several novel sets of mutually orthogonal basis vectors are introduced. It is shown that, only if two state preparers collaborate with each other, and perform projective measurements under suitable measuring basis on their own qubit respectively, the sender can create a copy of the unknown state by means of some appropriate unitary operations. The advantage of the present schemes is that the total success probability for assisted cloning a perfect copy of the unknown state can reach 1.  相似文献   

7.
Remote state preparation (RSP) provides a useful way of transferring quantum information between two distant nodes based on the previously shared entanglement. In this paper, we study RSP of an arbitrary single-photon state in two degrees of freedom (DoFs). Using hyper-entanglement as a shared resource, our first goal is to remotely prepare the single-photon state in polarization and frequency DoFs and the second one is to reconstruct the single-photon state in polarization and time-bin DoFs. In the RSP process, the sender will rotate the quantum state in each DoF of the photon according to the knowledge of the state to be communicated. By performing a projective measurement on the polarization of the sender’s photon, the original single-photon state in two DoFs can be remotely reconstructed at the receiver’s quantum systems. This work demonstrates a novel capability for longdistance quantum communication.  相似文献   

8.
Recently,a scheme for deterministic remote preparation of arbitrary multi-qubit equatorial states was proposed by Wei et al.[Quantum Inf.Process.1770(2018)].It is worth mentioning that the construction of mutual orthogonal measurement basis plays a key role in quantum remote state preparation.In this paper,a simple and feasible remote preparation of arbitrary n-qubit equatorial states scheme is proposed.In our scheme,the success probability will reach unit.Moreover,there are no coefficient constraint and auxiliary qubits in this scheme.It means that the success probabilities are independent of the coefficients of the entangled channel.The advantage of our scheme is that the mutual orthogonal measurement basis is devised.To accomplish the quantum remote state preparation(RSP)schemes,some new sets of mutually orthogonal measurement basis are introduced.  相似文献   

9.

We propose two resource-efficient schemes of direct entanglement measurement of two-qubit Werner states via hybrid interaction system with nitrogen-vacancy (NV) center coupled to micro-cavity. Based on the unconventional encoding mode on auxiliary qubits, our physical unit can realize the hybrid controlled phase gate and controlled-NOT gate between spin and polarization qubits. Utilizing only one copy of initial entangled state, we implement direct concurrence measurement of spin Werner states in NV centers and polarization Werner states of single photons. Both schemes can be transformed into remote ones with the initial entangled states possessed by spatially separated participants. Experimental feasibility analyses indicate that the presented schemes have reliable performance in the current available experimental conditions.

  相似文献   

10.
邓黎  陈爱喜  徐彦秋 《中国物理 B》2008,17(10):3725-3728
In this paper, a scheme is proposed for remote state preparation (RSP) with cavity quantum electrodynamics (QED). In our scheme, two observers share two-atom nonmaximally entangled state as quantum channels and can realize remote preparation of state of an atom. We also propose a generalization for remote preparation of N-atom entangled state by (N+1)-atom GHZ-like state (N ≥ 2). By this scheme, one single-atom projective measurement is enough for the RSP of a qubit or N-atom entangled state, and the probability of success for RSP is unity. Furthermore, we have considered the case where observers use W-like state as quantum channels to realize RSP of a qubit. We compare our scheme with existing ones.  相似文献   

11.
We propose an ion-trap scheme for one-step generation of a special configuration of W-class state which has recently been shown to be better than canonical W states for several quantum-information processing tasks. We also present a method for one-step realization of a nontrivial collective operation which can transform a canonical W state into a fully separable state. Such a transformation plays a key role in recently proposed quantum protocols. The operation speed in our schemes increases with the number of qubits. This is contrary to usual entanglement generation and quantum manipulation schemes which take more and more time with the increase of the number of qubits.  相似文献   

12.
In this work, a scheme for controlled quantum state transfer is proposed using parity measurement in a cavity-waveguide system. As two special cases, two schemes of controlled quantum state transfer for one qubit and two qubits are investigated in detail. An important advantage is that controlled quantum state transfer can be completed by single-qubit rotations and the measurement of parity. Therefore, the present scheme might be realized in the scope of current experimental technology.  相似文献   

13.
Using partial entangled states as the quantum channel, two schemes for probabilistic remote preparation of the four-particle cluster-type state with real and complex coefficients are presented. In the first scheme, the sender and the receiver share two partial Bell states and one partial three-qubit GHZ stats as the quantum channel, and the sender can help a remote receiver to prepare a four-particle entangled cluster-type state by using three-qubit projective measurements with certain probability. In the second scheme, the quantum channel is composed of two partial three-qubit GHZ states, the remote state preparation (RSP) can be successfully realized via the positive operator valued measure (POVM), and the two-particle projective measurements are also needed in this process. The total success probability and classical communication cost are calculated.  相似文献   

14.
We propose two schemes for entanglement generation and quantum state transfer via a double-quantum-dot system. Our schemes only need spin-parity measurements and single-qubit measurements combined with additional qubits. Discussions about the feasibility of the current scheme show that they would be realized within the current experimental technology.  相似文献   

15.
Quantum computation can be performed by encoding logical qubits into the states of two or more physical qubits, and control of effective exchange interactions and possibly a global magnetic field. This "encoded universality" paradigm offers potential simplifications in quantum computer design since it does away with the need to control physical qubits individually. Here we show how encoded universality schemes can be combined with fault-tolerant quantum error correction, thus establishing the scalability of such schemes.  相似文献   

16.
We present two schemes for preparing cluster states with atomic qubits in an ion-trap system. In the first scheme an auxiliary atomic level is needed. While in the second scheme an additional classical driven field is used, and the multi-ion cluster states can be generated by one step. Both the schemes are insensitive to thermal motion of the ions, all the facilities used in them are well within state of the art.  相似文献   

17.
In quantum information processing, the quality of photon system is decreased by the inevitable interaction with environment, which will greatly reduce the efficiency and security of quantum information processing. In this paper, we propose hyperentanglement-assisted hyperdistillation schemes to guarantee the quality of hyper-encoding photon system based on the method of quantum hyper-teleportation, which can increase the success probability of hyperdistillation and reduce the resource consumption. First, we propose a hyperentanglement-assisted single-photon hyperdistillation (HASPHD) scheme for polarization and spatial qubits to get rid of the vacuum state component caused by transmission loss, whose success probability can achieve the optimal one by increasing the efficiency of quantum hyper-teleportation. Subsequently, we present two hyperentanglement-assisted hyperentanglement distillation (HAHED) schemes for photon system to protect hyperentanglement from both transmission loss and quantum channel noise, which can recover the less-entangled mixed state to maximally hyperentangled state for known-parameter and unknown-parameter cases with high success probability and low resource consumption. In these hyperdistillation schemes, the influence of imperfect effects of optical elements can be largely decreased by the quantum hyper-teleportation method. These characters make the hyperentanglement-assisted hyperdistillation schemes have potential application prospects in practical quantum information processing.  相似文献   

18.
Two charge qubits being coupled to a damped cavity with different couplings are considered. The dynamical evolution of the entanglement between the two qubits is demonstrated analytically or numerically. It is found that with the cavity dissipation, the steady entanglement between the two qubits can be achieved. The two qubits being initially in the separable and most mixed state can be easily induced to a steady entangled state, and the relative difference of the couplings can be used to enhance the steady entanglement between the two charge qubits.  相似文献   

19.
We present a way to transfer maximally- or partially-entangled states of n single-photon-state (SPS) qubits onto ncoherent-state (CS) qubits, by employing 2nmicrowave cavities coupled to a superconducting flux qutrit. The two logic states of a SPS qubit here are represented by the vacuum state and the single-photon state of a cavity, while the two logic states of a CS qubit are encoded with two coherent states of a cavity. Because of using only one superconducting qutrit as the coupler, the circuit architecture is significantly simplified. The operation time for the state transfer does not increase with the increasing of the number of qubits. When the dissipation of the system is negligible, the quantum state can be transferred in a deterministic way since no measurement is required. Furthermore, the higher-energy intermediate level of the coupler qutrit is not excited during the entire operation and thus decoherence from the qutrit is greatly suppressed. As a specific example, we numerically demonstrate that the high-fidelity transfer of a Bell state of two SPS qubits onto two CS qubits is achievable within the present-day circuit QED technology. Finally, it is worthy to note that when the dissipation is negligible, entangled states of n CS qubits can be transferred back onto n SPS qubits by performing reverse operations. This proposal is quite general and can be extended to accomplish the same task, by employing a natural or artificial atom to couple 2nmicrowave or optical cavities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号