首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Fluorescent characteristics of a series of powder CaF2: Mn phosphors (from 0.01 to 2.47 wt. % of Mn in the mixture) excited by VUV radiation with quantum energies up to 14 eV at 293 K and up to 12 eV at 85 K are measured. Narrow excitation bands of Mn2+ centers found at 7.9 and 8.6 eV (at 293 K) are assigned to partially forbidden transitions of electrons from the ground state 6 S split by the crystalline field (10 Dq=0.71 eV from the literature) in two sublevels to the excited level corresponding to the 6 D term of a free Mn2+ ion (3d 5 → 3d 44s transitions). A wide nonelementary excitation band in the region of 9.1–10.3 eV is interpreted as photogeneration of near-activator D-excitations: allowed transitions of electrons from levels that are split from the top of the valence band under the influence of an impurity ion to the free 4s-orbital of a Mn2+ ion. Channels of energy transport in the CaF2: Mn system are briefly analyzed.  相似文献   

2.
The electronic levels of the complex TiO?86 in the D2h symmetry are determined according to an extended L. C. A. O. method. The results can explain the X-ray spectra of TiO2. The absoption LIII and K rays are related to transitions from the 2p3/2 and 1 s levels to the conduction band levels since the emission LIII and K components are explained by the transitions from the valence band levels to the 2p3/2 and 1 s states. Interband transitions are related to the components of the optical reflexion spectrum of TiO2 for the energies 0–20 eV. A comparaison is made with the electronic band structures of SnO2, TiO2 and BaTiO3. At the center of the Brillouin zone, we obtain a forbidden gap of 3,01 eV, the corresponding widths of the valence and conduction band are 4,8 and 2,9 eV.  相似文献   

3.
The optical absorption spectra of MnCl2, FeCl2, CoCl2, and NiCl2 have been measured over the energy range from 2 to 30 eV. The gross features of the spectra, especially broad bands above 10eV, are alike in all of the four materials. The charge transfer bands due to the electronic transitions from the 3p level of chlorine to the 3d and 4s levels of metal ions and the band due to the 3d → 4s transition are assigned in the spectra.  相似文献   

4.
The absorption spectra of evaporated thin films of MnF2, MnCl2, MnBr2 have been measured in the energy range 20–67 eV. The onset of the absorption of 3p Mn2+ is about 50 eV. At lower energies, the structures may be attributed to transitions from 2s F-, 4s Br- and 3d Mn2+ levels.  相似文献   

5.
6.
The reflection and luminescence excitation spectra of CaF2 crystals containing europium ions in divalent (Eu2+) and trivalent (Eu3+) states were measured in the range from 4 to 16 eV. It was established that, in CaF2 : Eu3+ crystals, luminescence of Eu3+ ions (the f-f transitions) is effectively excited both in the charge-transfer band (at ~8 eV) and in the region of the 4f–5d transitions (at ~10 eV) but is virtually not excited in the fundamental region of the crystal (at an energy higher than 10.5 eV). Luminescence of Eu2+ ions (the 427-nm band) in CaF2 : Eu3+ is effectively excited in the fundamental region of the crystal; i.e., luminescence of divalent europium ions occurs through the trapping mechanism. Emission of Eu2+ ions in CaF2 : Eu2+ crystals is characterized by the excitation band at an energy of 5.6 eV (the 4f → 5d,t 2g transitions), as well as by the exciton and interband luminescence excitations. The results obtained and data available in the literature are used to construct the energy level diagram with the basic electron transitions in the CaF2 : Eu crystals.  相似文献   

7.
In an experimental study of excitation of the holmium atom by electrons with an energy of 50 eV, the excitation cross sections are measured for 102 transitions from even levels of Ho I. Radiative transitions to the 4f 116s 2 4 I°13/2,11/2,9/2 levels of the ground state term are considered. Twenty-nine optical excitation functions are recorded in the exciting electron energy range of 0–250 eV. An classification of a number of Ho I lines located in the UV and visible spectral regions is proposed using the known energy levels.  相似文献   

8.
The electron distribution in the valence band from single crystals of titanium carbide has been studied by photoelectron spectroscopy with photon energies h?ω = 16.8, 21.2, 40.8 and 1486.6 eV. The most conspicious feature of the electron distribution curves for TiC is a hybridization between the titanium 3d and carbon 2p states at ca. 3–4-eV binding energy, and a single carbon 2s band at ca. 10 eV. By taking into account the strong symmetry and energy dependence of the photoionization crosssections, as well as the surface sensitivity, we have identified strong emission from a carbon 2p band at ? 2.9-eV energy. Our results are compared with several recent energy band structure calculations and other experimental data. Results from pure titanium, which have been used for reference purposes, are also presented.The valence band from single crystals of titanium carbide have been studied by means of photoelectron spectroscopy, with photon energies ranging from 16.8 to 1486.6 eV.By taking into account effects such as the symmetry and energy dependence of the photoionization cross-sections and surface sensitivity, we have found the valence band of titanium carbide to consist of two peaks. The upper part of the valence band at 3–4 eV below the Fermi level consists of a hybridization between Ti 3d and C 2p states. The C 2p states observed in our spectra were mainly excited from a band about 2.9 eV below the Fermi level. The APW5–9, MAPW10 and EPM11 band structure calculations predict a flat band of p-character between the symmetry points X4 and K3, most likely responsible for the majority of C 2p excitations observed. The C 2s states, on the other hand, form a single band centered around ?10.4 eV.The results obtained are consistent with several recent energy band structure calculations5–11, 13 that predict a combined bonding of covalent, ionic and metallic nature.  相似文献   

9.
The paper reports on a study of luminescence and excitation spectra of SrAlF5:Pr3+ (0.5 mol %) polycrystals performed at 10 and 300 K with synchrotron radiation in the range from 5 to 25 eV. The Pr3+ ions in SrAlF5 were shown to emit successively two photons in transitions from the 1 S 0 and 3 P 0 levels. The main energy characteristics of the compound, namely, the position of the 4f → 5d excitation band (5.95–8.0 eV), the energy separation between the 1 S 0, 4f and the lowest 5d levels (~0.15 eV), and the SrAlF5 band gap width (~12 eV), were determined. SrAlF5:Pr3+ was found to possess a number of features not found in other Pr3+-activated fluorides.  相似文献   

10.
Dissociative excitation of even quartet and sextet levels of the manganese atom by electron collisions with manganese diiodide molecules was studied experimentally. Twelve excitation cross-sections for transitions from quartet levels and 23 cross-sections for transitions from sextet levels were measured at an incident electron energy of 100 eV. The optical excitation function (OEF) was recorded in the range of electron energies 0?100 eV for transitions originating at the 3d54s4de6DJ levels. The potential channels of dissociative excitation in the range of low electron energies (E < 22 eV) were discussed.  相似文献   

11.
The long wavelength tail of the fundamental absorption in NaClO3 and KClO3 crystals has been analysed based on the theory of band to band transitions of Bardeen et al.[8] developed in the case of semi-conducting crystals. Evidence of phonon involvement in the transitions giving an indirect band gap is observed. The energies of the phonons involved in the process are the same for both the crystals, and agree well with combinations of prinicple frequencies of ClO3? ion, their overtones and also lattice phonons. The indirect band gap in these crystals varies with temperature more or less linearly and the rate of variation is ?3·8 × 10?4 eV/K and ?5·0 × 10?4 eV/K for sodium chlorate and potassium chlorate respectively.  相似文献   

12.
The theory of optical absorption due to transitions between a valence band and a hydrogen-like local level associated with a conduction band is modified to permit an arbitrary power-law dependence of energy on the magnitude of the wave-vector of carriers in the valence band. The observed absorption for photon energies below 1.6 eV in the ferromagnetic semiconductor CdCr2Se4 is discussed in terms of a combination of two types of terms. The first type of absorption is due to transitions to a local level from a band with two branches, in each of which there is an energy region with a width of 0.28 eV or more beginning 0.10–0.16 eV from the band edge, in which the energy measured from some origin near but not necessarily equal to the band-edge is approximately proportional to (wave-vector)(13). The second type of absorption has a dependence on photon energy ?ω of the form (?ω ? E3)2, where E3 is a threshold energy probably connected with indirect transitions between bands as suggested by Sakai, Sugano and Okabe. After constraints on parameters appearing in the theory are imposed by use of results of these authors and of Shepherd, it is found that curves of Harbeke and Lehmann on optical absorption in CdCr2Se4 at 4.2, 78, 130 and 298 K in the photon-energy range 1.14–1.42 eV can be fitted to a mean accuracy of 3%, using an average of 3.75 adjustable parameters for each curve. The strength of the indirect band-to-band absorption does not have the temperature dependence expected for phonon-assisted indirect band-to-band transitions, but can be described by a term independent of temperature plus another term proportional to the square of the deviation of the magnetization from saturation. The fitting of the absorption curves requires that the ratio of the widths of the two branches of the bands varies from about 1.6 at low temperatures to 1.35 at 298 K and that the total width of the bands involved is less than 1 eV.  相似文献   

13.
A study of the spectrum of nonlinear two-photon and two-step absorption in NiO single crystals, carried out in the energy region ?ω1 + ?ω2 = 2.45–4.575 eV, showed it to have a complex shape and consist of very strong peaks (from 0.05 to 2.7 cm/MW). Within the energy interval 2.45–3.3 eV, the spectrum is due to d-d transitions in the Ni2+ ion. The band gap width was determined to be E g =3.466 eV. The spectral features seen above this energy originate from interband transitions from three valence subbands to the conduction band bottom.  相似文献   

14.
Transmission and reflection measurements in the wavelength region 450-1100 nm were carried out on Tl4In3GaS8-layered single crystals. The analysis of the room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 2.32 and 2.52 eV, respectively. The rate of change of the indirect band gap with temperature dEgi/dT=-6.0×10−4 eV/K was determined from transmission measurements in the temperature range of 10-300 K. The absolute zero value of the band gap energy was obtained as Egi(0)=2.44 eV. The dispersion of the refractive index is discussed in terms of the Wemple-DiDomenico single-effective-oscillator model. The refractive index dispersion parameters: oscillator energy, dispersion energy, oscillator strength and zero-frequency refractive index were found to be 4.87 eV, 26.77 eV, 8.48×1013 m−2 and 2.55, respectively.  相似文献   

15.
Recent data on cascade transitions in the 4f shell of the Pr3+ ion in various matrices are analyzed. Spectral and kinetic characteristics of LaF3-LiF:Pr and SrAl12O19:Pr phosphors, which show photon cascade emission, were investigated. The emission intensities in the first (1 S1 I 6 transitions) and the second (transitions from the 3 P 0 level to the 3 H and 3 F multiplets) cascade stages were measured and the temperature dependences of the intensities of the main emission lines and their kinetic characteristics were determined. The following parameters of SrAl12O19:Pr were found: the band gap width (7.5 eV), the energy gap between the 1 S 0, 4f and 5d levels (0.24 eV), and the characteristics of the 4f→5d band (6.0–7.5 eV) of the Pr3+ luminescence excitation. It is shown that the LaF3-LiF:Pr compound has a number of specific features in comparison with other Pr3+-doped phosphors.  相似文献   

16.
Spectral and kinetic characteristics of the luminescence and luminescence excitation spectra of polycrystalline SrB4O7:Pr (1%) and SrB6O10:Pr (1%) samples are studied at 150–170 K. The samples show an intense luminescence band in the vicinity of 405 nm (1 S 01 I 6 transitions of Pr3+) and shorter wavelength bands also assigned to transitions from the 1 S 0 level. The main luminescence decay constant is ~2×10?7 s. The excitation spectra of the 1 S 0 luminescence in these crystals are significantly different. The SrB4O7:Pr crystal shows three well-resolved bands at 6.14, 6.55, and 6.91 eV in the region of the 4f 2→4f 15d transitions and a complex structure in the region of interband transitions (7.1–20 eV), whereas the SrB6O10:Pr crystal shows a weakly structured band at 6.31 eV and no excitation in the region of the interband transitions. The physical mechanisms that may be responsible for the observed features of the spectra are discussed.  相似文献   

17.
The valence band density of states for PbI2 is determined from X-ray and u.v. induced photoelectron spectra. It is shown that the band derived from Pb 6s states is at 8 eV binding energy and not at the top of the valence bands as suggested by band structure and charge density calculations. A rigid shift in the predominantly iodine 5p derived bands to lower binding energy brings the band structure calculations into essential agreement with experiment. Pb 5d core level binding energies determined here are used to derive core level exciton energies of 0.7 eV from published reflectivity spectra.  相似文献   

18.
A study has been made of the spectral dependence of the Cotton-Mouton effect (CME) quadratic in magnetic field, nonreciprocal birefringence (NB) linear in magnetic field, and the Faraday effect (FE) in the cubic magnetic semiconductor γ-Dy2S3. Unlike the FE, the CME and the NB in this crystal are anisotropic, with the pattern of the anisotropy being dependent on the photon energy. The dependence of the CME and NB dispersion on the direction of the magnetic field B indicates contribution from a variety of electronic transitions and mechanisms to these phenomena. It is shown that the resonant contributions to the CME and NB in the transparency region originate from electronic transitions near E?3.4 eV (beyond the band edge E g=2.8 eV), which are likely transitions from the localized ground state of the Dy3+ ion to states derived from mixing of the band and 4f N?1 5d states of the dysprosium ion. The character of the CME anisotropy in the transparency region and near the local electronic transition 6 H 15/26 F 3/2 connecting states of the unfilled 4f shell of the Dy3+ ion suggests the presence of a strong axial component of the crystal field acting on the rare earth ion.  相似文献   

19.
By simultaneous evaporation of LiI and Li onto a cooled substrate F centers can be produced in the hexagonal (78 K<T K <200 K) and amorphous (T K <78 K) phase of one and the same salt. In both modifications there exist two types of centers F and F*. The F* center differs from the cubic F center (T d -symmetry) by a nearby Frenkel defect. In hexagonal films the normal F band peaks at 2.58 eV, whereas the transitions of the F* center appear at 2.92 and 2.58 eV too. Polarized irradiation at 20 K causes a dichroic behaviour of the F* centers. Both types of centers can be transformed into one another photochemically. In the amorphous phase all transitions are shifted to lower energies by about 0.1 eV. After the phase change amorphous→hexagonal the absorption bands shift back by the same amount of energy. AboveT K =230 K the excess metal forms colloids. The absorption bands are due to colloidal centers embedded in the crystalline material (2.25 eV) and films adsorbed to the crystallites (3.1 eV), respectively. By annealing a particle growth can be observed. After electrolytic colouration cubic single crystals of LiI exhibit an absorption band peaking at 2.36 eV. However, it is not yet sure, if this band is allowed to be ascribed to F centers.  相似文献   

20.
The temperature dependence of spectral distribution of photoconductivity was measured on evaporated polycrystalline layers of lead-selenide in the range from 80 to 300 °K. The method ofBardeen, Blatt andHall was used, to calculate the band gap for direct and indirect transitions. A linear positive temperature coefficient was obtained for both transitions. The values areβ dir=+(4.5±0.2) · 10?4 eV/°K andβ ind=+(3.0±0.2)· 10?4eV/°K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号