首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
We investigated carbon monoxide (CO) adsorption and desorption behaviors on 0.1-nm-, 0.15-nm-, and 0.3-nm-thick-Pd-deposited Cu(1 1 0) surfaces using infrared reflection absorption (IRRAS) and temperature-programmed desorption (TPD) spectroscopic methods. CO was exposed to the 0.1-nm-thick-Pd/Cu(1 1 0) surface at the substrate temperature of 90 K. The IR band attributable to CO bonded to Cu atoms emerged at 2092 cm−1: the band was located at 2100 cm−1 at saturation coverage, with a shoulder at 2110 cm−1. In addition to these bands, weak absorptions attributable to the PdCO bonds appeared at 2050 and 1960 cm−1. With increasing Pd thickness, the Pd related-bands became increasingly prominent. Particularly at the early stage of exposure, the band at 2115 cm−1 became visible. The band at 2117 cm−1 dominated the spectra all through the exposures for the 0.3-nm-thick-Pd surface. The TPD spectra of the surfaces showed two remarkable features at around 220-250 and 320-390 K, ascribable ,respectively, to CuCO and PdCO. The desorption peaks shifted to higher temperatures with increasing Pd thickness. Based on the TPD and IRRAS results, we discuss the adsorption-desorption behaviors of CO on the Pd/Cu(1 1 0) surfaces.  相似文献   

2.
The infrared spectra and stability of CO and H2O sorption over Ag-exchanged ZSM-5 zeolite were investigated by using density function theory (DFT). The changes of NBO charge show that the electron transfers from CO molecule to the Ag+ cation to form an σ-bond, and it accompanies by the back donation of d-electrons from Ag+ cation to the CO (π*) orbital as one and two CO molecules are adsorbed on Ag-ZSM-5. The free energy changes ΔG, −5.55 kcal/mol and 6.52 kcal/mol for one and two CO molecules, illustrate that the Ag+(CO)2 complex is unstable at the room temperature. The vibration frequency of C-O stretching of one CO molecule bonded to Ag+ ion at 2211 cm−1 is in good agreement with the experimental results. The calculated C-O symmetric and antisymmetric stretching frequencies in the Ag+(CO)2 complex shift to 2231 cm−1 and 2205 cm−1 when the second CO molecule is adsorbed. The calculated C-O stretching frequency in CO-Ag-ZSM-5-H2O complex shifts to 2199 cm−1, the symmetric and antisymmetric O-H stretching frequencies are 3390 cm−1 and 3869 cm−1, respectively. The Gibbs free energy change (ΔGH2O) is −6.58 kcal/mol as a H2O molecule is adsorbed on CO-Ag-ZSM-5 complex at 298 K. The results show that CO-Ag-ZSM-5-H2O complex is more stable at room temperature.  相似文献   

3.
Using infrared reflection absorption spectroscopy (IRRAS) and temperature programmed desorption (TPD), we investigated carbon monoxide (CO) adsorption and desorption behaviors on atomic checkerboard structures of Cu and Pd formed by Pd vacuum deposition at various temperatures of Cu(1 0 0). The 0.15-nm-thick Pd deposition onto a clean Cu(1 0 0) surface at room temperature (RT) showed a clear c(2 × 2) low-energy electron diffraction (LEED) pattern, i.e. Cu(1 0 0)-c(2 × 2)-Pd. The RT-CO exposure to the c(2 × 2) surfaces resulted in IRRAS absorption caused by CO adsorbed on the on-top sites of Pd. The LEED patterns of the Pd-deposited Cu(1 0 0) at higher substrate temperatures revealed less-contrasted c(2 × 2) patterns. The IRRAS intensities of the linearly bonded CO bands on 373-K-, 473-K-, and 673-K-deposited c(2 × 2) surfaces are, respectively, 25%, 22%, and 10% less intense than those on the RT-deposited surface, indicating that Pd coverages at the outermost c(2 × 2) surfaces decrease with increasing deposition temperature. In the initial stage of the 90-K-CO exposure to the RT surface, the band attributable to CO bonded to the Pd emerged at 2067 cm−1 and shifted to higher frequencies with increasing CO exposure. At saturation coverage, the band was located at 2093 cm−1. In contrast, two distinct bands around 2090 cm−1 were apparent on the spectrum of the 473-K-deposited surface: the CO saturation spectrum was dominated by an apparent single absorption at 2090 cm−1 for the 673-K-deposited surface. The TPD spectra of the surfaces showed peaks at around 200 and 300 K, which were ascribable respectively to Cu-CO and Pd-CO. Taking into account the TPD and IRRAS results, we discuss the adsorption-desorption behaviors of CO on the ordered checkerboard structures.  相似文献   

4.
We report the first observation of thermally emitted infrared radiation from vibrational modes of molecules adsorbed on clean, single crystal metal surfaces. The observation of emission from CO adsorbed on Ni demonstrates the surface sensitivity of a novel apparatus for infrared vibrational spectroscopy, with a resolution of 1 to 15 cm?1 over the frequency range from 330 to 3000 cm?1. A liquid helium cooled grating spectrometer measures the thermal radiation from a room temperature, single crystal sample, which is mounted in an ultrahigh vacuum system. Measurements of frequencies and linewidths of CO on a single crystal Ni sample, as a function of coverage, are discussed.  相似文献   

5.
The Fourier transform infrared (FTIR) absorption spectrum of the ν2 fundamental band of the formaldehyde isotopomer H213CO was recorded at an unapodized resolution of 0.0063 cm−1 in the 1630–1780 cm−1 region. Upper state (ν2 = 1) rovibrational constants inclusive of three rotational, five quartic, and six sextic centrifugal distortion constants were accurately determined by assigning and fitting 447 unperturbed infrared transitions with a rms deviation of 0.00056 cm−1 using Watson’s A-reduced Hamiltonian in the Ir representation. Analysis of new transitions measured in this work yielded more higher-order upper state constants with greater accuracy than previously reported. The band center of the A-type ν2 band was found to be 1707.980943 ± 0.000058 cm−1 while the calculated inertial defect Δ2 of the H213CO molecule was 0.09581 ± 0.00004 μÅ2.  相似文献   

6.
《Surface science》1987,179(1):101-118
Harmonic oscillator models are used to explain recent experimental data on infrared absorption by CO molecules adsorbed on two stepped platinum surfaces. These data reveal only a lower frequency band at low coverage and only a higher frequency band at high coverage. Both bands exist over a range of intermediate coverages. The data are explained by a coupled-dipole model which includes the effects of electronic polarizability, the tilted orientation of CO molecules at step sites, and the electric field enhancement at step sites. The lower-frequency band is associated with CO molecules adsorbed on step sites and the higher-frequency band is associated with two-dimensional islands consisting of both step and terrace CO. The model explains the observed variation of frequency and intensity with coverage for CO adsorption on Pt(533) and Pt(432) surfaces. The model calculations indicate that the wavenumber for a single, linearly bonded CO molecule is about 9 cm−1 higher on a terrace site than on a step site.  相似文献   

7.
The adsorption of CO on Pt(111) surfaces has been studied under clean conditions by a highly surface sensitive double-beam infrared reflection spectroscopy (IRS). In contrast to results of other authors two stretching vibrations of adsorbed CO rather than one are detected near 2100cm−1 and 1870cm−1. This is in agreement with recent findings in high-resolution electron energy loss spectroscopy (ELS). The results are discussed in terms of two adsorption sites: CO adsorbed in on-top positions and double coordinated on bridging sites, respectively. Furthermore, a precursor state and a preferential adsorption in islands at low coverage is taken into account.  相似文献   

8.
Diamond-like carbon films containing Ag and Cu in nanocrystalline form were deposited onto SnO2-coated glass substrates by electrochemical technique. Relative amount of silver and copper to be incorporated in the DLC matrix was tailored by varying the amount of silver and copper containing salts in the electrolyte. Current density was adjusted to obtain films with different crystallite size while the volume fraction of the metal nanocrystallites was altered by varying the dilution of the solution containing the salts. Raman studies indicated the presence of two peaks located at ∼1350 cm−1 (D-line) and 1566 cm−1 (G-line) for all the films and the relative intensities of these peaks changed with the amount of metal incorporation in it. The FTIR spectra were seen to be dominated by a peak at 975 cm−1 for C-H out of plane deformation modes along with peaks for C-H bending, C-H stretching and C-C stretching modes at 858, 1113 and 1189 cm−1, respectively. The optical absorption spectra showed a single plasmon band instead of two characteristic bands for Ag and Cu. We ascribe this to nanophase limited interfacial alloying at the Ag-Cu interface. The experimental observation was analyzed in the light of Mie theory.  相似文献   

9.
Specular reflectance FTIR study of carbon monoxide adsorbed on platinum is performed on Pt/SiO2/Au layered structures prepared by deposition of thin films on silicon (1 0 0) wafers. The layered structures consist of 5 nm thick platinum films over SiO2 films of varying thicknesses with 50 nm thick reflecting gold films underneath. Due to optical interference effects, the reflectance of each of these structures varies with the incident infrared wavelength and goes through a minimum at a wavelength that depends on the thickness of the SiO2 layer. The decrease in the reflectance R causes an effective increase in the ΔR/R value resulting in a large increase in the infrared absorption band intensity of linearly-adsorbed CO. The peak height changes with changing the SiO2 thickness in the structures and is greatest for the sample which has lowest reflectance near the absorption wavelength of CO (∼2100 cm−1). This improvement in the ratio of FTIR signal to background reflectance can be very useful for probing low surface area model catalytic surfaces at atmospheric pressures and under reaction conditions. A spectrum of CO adsorbed on nanofabricated Pt nanowire catalysts on TiO2 support is also shown as an example of the sensitivity enhancement on layered structures.  相似文献   

10.
The adsorption properties of CO molecules adsorbed on Ni, Pd, Cu and Ag atoms deposited on O2−, F and F+ sites of MgO, CaO, SrO and BaO terrace surfaces have been studied by means of density functional calculations and embedded cluster model. The examined clusters were embedded in the simulated Coulomb fields that closely approximate the Madelung fields of the host surfaces. The adsorption properties of CO have been analyzed with reference to the basicity of the oxide support, bond order conservation energy, pairwise and non-pairwise additivity, associative adsorption, electrostatic potentials, and orbital interactions. CO adsorption on an oxide support is drastically enhanced when CO is adsorbed on a metal deposited on this support. A dramatic change is found, and explained, when one compares the CO binding energy to O2− and F sites. The formation of a strong bond at the support-metal interface has a considerable consequence on the metal-CO binding energy. The binding of CO is dominated by the metal-CO pairwise additive term, and the non-additivity term increases with increasing the basicity of the support. While the classical contributions to the electrostatic interactions are quite similar for the deposited metals, they are quite dissimilar when going from defect-free to defect-containing surfaces. The adsorption properties correlate linearly with the basicity and energy gaps of the oxide support where the electrostatic potential generated by the oxide modifies the physical and chemical properties of the adsorbed metal and therefore its reactivity versus the CO adsorbate.  相似文献   

11.
The adsorption of 12CO on Ir films evaporated under ultrahigh vacuum (UHV) conditions was studied using infrared reflection-absorption spectroscopy (IRAS). Only a single absorption band was observed at 300 K, shifting continuously from the “singleton” value ~2010 cm?1 at very low coverages to 2093 cm?1 at saturation coverage. This band is attributed to CO adsorbed on top of the surface atoms. Synchronously with this shift the bandwidth at half maximum intensity Δv12 decreases from ~30 to 8 cm?1. The integrated peak area increases linearly with coverage up to a relative coverage (θr) of approximately 0.4, then the increase levels off and a maximum is observed. Upon continuing adsorption the intensity decreases slightly. In addition results are presented on adsorption at 300 K of 12CO?13CO isotopic mixtures. The coverage induced frequency shift is discussed in terms of a dipole-dipole coupling mechanism and it is concluded that intermolecular coupling can explain the shift (~83 cm?1) observed. The decrease in intensity at coverages > 0.4 is attributed to the formation of a compressed overlayer with part of the CO molecules adsorbed in a multicentre position with different spectral properties. No infrared bands of nitrogen adsorbed at 78 K could be detected at pressures up to 6.7 kPa (1 Pa = 0.0075 Torr, 1 Torr = 133.32 Pa).  相似文献   

12.
The interaction of CO with Au atoms adsorbed on terrace and low-coordinates sites (edge and corner) of the MgO(1 0 0) surface was studied using the density functional theory (DFT) in combination with embedded cluster models. Surface anionic (O2−) and neutral oxygen vacancy (Fs) sites were considered. In all the cases, the CO stretching frequencies are shifted with respect to free CO with values between −232 and −358 cm−1. In particular, the values for Au on Fs at edge and corner are shifted to higher stretching frequencies by 100 and 59 cm−1, respectively, with respect to the value on a perfect MgO(1 0 0) surface. This result is in agreement with recent scanning tunneling microscopy and infrared spectroscopy experiments where a corresponding shift of 70 cm−1 was observed by comparing the measurements on perfect and O-deficient MgO(1 0 0) surfaces. However, these results are different than expected because Au atoms on Fs centers are negatively charged and, therefore, according to the generally accepted scheme the CO frequency should be red-shifted with respect to the adsorption on anionic five-coordinated site where the Au atom is essentially neutral. The following picture emerges from the present results: the single occupied HOMO(α) of Au atom on Fs at low-coordinated sites consists in two lobes extended sideward the Au atom. For symmetry reasons, this MO overlaps efficiently with the 2π MO of CO. This bonding contribution to the Au-CO link is counteracted by a Pauli repulsion between the 5σ MO of CO and more internal orbitals (the HOMO-1(α) and the HOMO(β)) centered on Au. In consequence, CO is forced to vibrate against a region with a high electron density. This is the so-called “wall effect” which by itself contributes to higher CO frequency values.  相似文献   

13.
Infrared reflection absorption spectroscopy (IRRAS) was used to investigate carbon monoxide (CO) adsorption on 0.15 nm-thick-0.6 nm-thick Pd-deposited Pt(1 1 1) bimetallic surfaces: Pdx/Pt(1 1 1) (where x is the Pd thickness in nanometers) fabricated using molecular beam epitaxial method at substrate temperatures of 343 K, 473 K, and 673 K. Reflection high-energy electron diffraction (RHEED) measurements for Pd0.15-0.6 nm/Pt(1 1 1) surfaces fabricated at 343 K showed that Pd grows epitaxially on a clean Pt(1 1 1), having an almost identical lattice constant of Pt(1 1 1). The 1.0 L CO exposure to the clean Pt(1 1 1) at room temperature yielded linearly bonded and bridge-bonded CO-Pt bands at 2093 and 1855 cm−1. The CO-Pt band intensities for the CO-exposed Pdx/Pt(1 1 1) surfaces decreased with increasing Pd thickness. For Pd0.3 nm/Pt(1 1 1) deposited at 343 K, the 1933 cm−1 band caused by bridge-bonded CO-Pd enhanced the spectral intensity. The linear-bonded CO-Pt band (2090 cm−1) almost disappeared and the bridge-bonded CO-Pd band dominated the spectra for Pd0.6 nm/Pt(1 1 1). With increasing substrate temperature during the Pd depositions, the relative band intensities of the CO-Pt/CO-Pd increased. For the Pd0.3 nm/Pt(1 1 1) deposited at 673 K, the linear-bonded CO-Pt and bridge-bonded CO-Pd bands are located respectively at 2071 and 1928 cm−1. The temperature-programmed desorption (TPD) spectrum for the 673 K-deposited Pd0.3 nm/Pt(1 1 1) showed that a desorption signal for the adsorbed CO on the Pt sites decreased in intensity and shifted ca. 20 K to a lower temperature than those for the clean Pt(1 1 1). We discuss the CO adsorption behavior on well-defined Pd-deposited Pt(1 1 1) bimetallic surfaces.  相似文献   

14.
Infrared reflection absorption spectroscopy (IRAS) shows that the CO stretching bands of Fe(CO)5 adsorbed on Au surfaces are significantly different in band shape as well as in frequency from the bands observed in a transmission mode. This difference has been observed for other metal substrates and explained in terms of the anomalous dispersion of the refractive index in the region of the observed bands. The refractive indices of Fe(CO)5 are calculated using the Kramers-Kronig relation from the transmission spectra of Fe(CO)5 adsorbed on a sapphire plate, an SiO2-coated sapphire plate, and an Au film evaporated on a sapphire plate, and the IRA spectra of Fe(CO)5 adsorbed on Au are calculated using Fresnel's formula. The results show that the ν10 band of Fe(CO)5 becomes very sharp and shifts to higher frequencies by more than 10 cm−1, while the ν6 band becomes a shoulder of the v10 band, in good agreement with the observed IRA spectra. The IRAS calculation also shows that the weak band observed at 2114 cm−1 for the Au film remains unchanged in position, in agreement with the observed IRAS.  相似文献   

15.
Reflection-absorption infrared spectroscopic and thermal desorption techniques have been used to study the interaction of mixtures of carbon monoxide and hydrogen with evaporated rhodium films. For equimolar mixtures near 10?9 Torr, hydrogen adsorbed much more rapidly, but long exposure times or increases in CO pressures to 10?6 Torr led to its partial, but never complete, displacement by adsorbed carbon monoxide. Hydrogen desorption spectra taken during the displacement process showed two peaks which was consistent with a cooperative interaction between adsorbed CO and H species. In contrast to previous transmission studies of CO adsorption on small rhodium particles, the present reflection—absorption infrared study of the film system showed a single absorption band at 2075 ±10 cm?1. While explanations for the discrepancy in terms of particle size effects are possible it is considered more likely that all CO molecules are linearly bound to individual Rh atoms in the present situation. In our work, increases in CO pressure (especially above 10?6 Torr) were accompanied by an upward frequency shift (from 2065 cm?1 to 2085 cm?1) and a narrowing in half width (from 25 to 17 cm?1). Several possible explanations for the latter unusual effect are discussed.  相似文献   

16.
Infrared reflection absorption spectroscopy (IRRAS) was used to investigate carbon monoxide (CO) adsorption on Pt(1 0 0) surfaces deposited with Co layers with different thicknesses. Pt(1 0 0) surfaces cleaned in ultrahigh vacuum showed surface reconstruction, i.e., Pt(1 0 0)-hex: two absorption bands ascribable to adsorbed CO on the 1 × 1 surface and hex domains emerge at 2086 and 2074 cm−1, respectively, after 1.0 L CO exposure. Deposition of a 0.3-nm-thick-Co layer on Pt(1 0 0)-hex at 333 K changes the low-energy electron diffraction (LEED) pattern from hex to p(1 × 1), indicating that the deposited Co lifts the reconstruction. The IRRAS spectrum for 1.0-L-CO-exposed Co0.3 nm/Pt(1 0 0)-hex fabricated at 333 K yields a single absorption band at 2059 cm−1. For Co0.3 nm/Pt(1 0 0)-hex fabricated at 693 K, the LEED pattern shows a less-contrasted hex and the pattern remains nearly unchanged even after CO exposure of 11 L, although only 1.0 L CO exposure to Pt(1 0 0)-hex lifts the surface reconstruction. A Co0.3 nm/Pt(1 0 0)-hex surface fabricated at 753 K exhibits an absorption band at 2077 cm−1, which is considered to originate from CO adsorbed on the Pt-enriched surface alloy. Co0.3 nm/Pt(1 0 0)-hex surfaces fabricated above 773 K show a clear hex-reconstructed LEED pattern, and the frequencies of the adsorbed CO bands are comparable to those of Pt(1 0 0)-hex, indicating that the deposited Co atoms are diffused near the surface region. The outermost surface of the 3.0-nm-thick-Co-deposited Pt(1 0 0)-hex is composed of Pt-Co alloy domains even at a deposition temperature of 873 K. Based on the LEED and IRRAS results, the outermost surface structures of Cox/Pt(1 0 0)-hex are discussed.  相似文献   

17.
The adsorption of carbon monoxide on the LaB6(1 0 0) and LaB6(1 1 1) surfaces was studied experimentally with the techniques of reflection absorption infrared spectroscopy and X-ray photoelectron spectroscopy. The interaction of CO with the two surfaces was also studied with density functional theory. Both surfaces adsorb CO molecularly at low temperatures but in markedly different forms. On the LaB6(1 1 1) surface CO initially adsorbs at 90 K in a form that yields a CO stretching mode at 1502-1512 cm−1. With gentle annealing to 120 K, the CO switches to a bonding environment characterized by multiple CO stretch values from 1980 to 2080 cm−1, assigned to one, two, or three CO molecules terminally bonded to the B atoms of a triangular B3 unit at the (1 1 1) surface. In contrast, on the LaB6(1 0 0) surface only a single CO stretch is observed at 2094 cm−1, which is assigned to an atop CO molecule bonded to a La atom. The maximum intensity of the CO stretch vibration on the (1 0 0) surface is higher than on the (1 1 1) surface by a factor of 5. This difference is related to the different orientations of the CO molecules on the two surfaces and to reduced screening of the CO dynamic dipole moment on the (1 0 0) surface, where the bonding occurs further from the surface plane. On LaB6(1 0 0), XPS measurements indicate that CO dissociates on the surface at temperatures above 400 K.  相似文献   

18.
N2broadening coefficients have been measured for 65 lines of the13C16O 2–0 band using a Fourier transform spectrometer. These lines are located in the spectral range 4011–4252 cm−1. The spectra were recorded with 99% isotopically pure13CO in a White-type cell at a resolution of 0.005 cm−1. Voigt profiles convolved with the FTS apparatus function were fitted to the experimental lineshapes using a nonlinear least-squares fit technique. From the fits the Lorentzian HWHM was determined as function of N2pressure. Pressure broadening coefficients formbetween −33 and +34 were obtained with uncertainties of 5.8%. The results are compared to earlier published N2broadening coefficients and our measurements in the 2–0 band of12C16O. To our knowledge this is the first investigation of13CO pressure broadening.  相似文献   

19.
A Fourier Transform infrared spectrometer has been attached to an ultrahigh vacuum (UHV) apparatus in order to perform reflection-absorption infrared Spectroscopy (RAIRS) of adsorbed species on well-defined surfaces.An infrared spectrum of carbon monoxide (CO) adsorbed at 90 K on Cu(111) has been measured using a resolution of 2 cm−1 and a measuring time of 60 s. Coverages below 1 % of a monolayer are easily detectable.Tetracyanoethylene (TCNE) has been adsorbed at various coverages at 100 K on Cu(111). Strongly red-shifted CN stretchings modes due to charged TCNE adspecies are observed at low coverage. The RAIRS spectrum of the condensed phase is characteristic of crystalline TCNE.Finally, isotopically labeled 12C and 13C acetonitrile (CH3CN) has been adsorbed on Cu(111) as multilayers. Shifts caused by isotopic labeling as small as 3 cm−1 are easily detected.  相似文献   

20.
The Fourier-transform infrared emission spectra of BO were recorded using a Bruker IFS 125 HR spectrometer. The observed spectrum of BO in the 1200-2100 cm−1 region contains three bands: the fundamental bands of 11BO and 10BO and a hot band of 11BO with band origins measured to be 1861.9242(97), 1915.3071(09) and 1838.3773(68) cm−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号