首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
One-dimensional carbon nano-materials, in particular carbon nanotubes (CNTs) and carbon nanofibers (CNFs), are of scientific and technological interest due to their satisfactory properties and ability to serve as templates for directed assembly. In this work, linear high density polyethylene (PE) was periodically decorated on CNTs and CNFs using a supercritical carbon dioxide (scCO2)antisolvent-induced polymer epitaxy (SAIPE) method, leading to nano-hybrid shish-kebab (NHSK) structures. The formation mechanism of different morphologies of PE lamellae on CNTs and CNFs has been discussed. Palladium nanoparticles were synthesized and immobilized on the PE/CNF NHSK structure with the assistance of scCO2. The obtained hierarchical nano-hybrid architecture may find applications in microfabrication and other related fields.  相似文献   

2.
The carbon nanotubes (CNTs) periodically decorated by high-density polyethylene (HDPE) composites with nanohybrid shish kebabs (NHSK) structures were prepared by CNTs-initiated solution crystallization. The disc-shaped HDPE crystalline lamellae were periodically located on the surface of CNTs in the direction perpendicular to the nanotube axis. Observations from scanning electron microscopy and transmission electron microscopy showed that with the increasing of crystallization temperature, the lateral dimension of the lamellae was decreased and the distance between two neighboring lamellae was increased. However, the thickness of the lamellae did not vary with the crystallization temperature. The formation mechanism of the NHSK structures was also explained. The one-dimensional structure and the ultra-high curved surface of CNTs lead to strong geometry confinement, which plays a main role in the formation of the NHSKs. Supported by the National Natural Science Foundation of China (Grant No. 50772031), the Chinese Program for New Century Excellent Talents in University (Grant No. NCET-05-0678), the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education, Hubei Provincial Department of Education (Grant No. Q200610005), and Hubei Provincial Science & Technology Department (Grant No. 2006ABA020)  相似文献   

3.
Carbon nanotube (CNT) is one of the most extensively investigated nanomaterials. Patterning soft matter such as liquid crystals and polymers on CNTs could potentially enable various applications for CNTs. We have demonstrated that controlled polymer crystallization using CNTs as the 1D nucleation sites can lead to periodically functionalized CNTs. Here we show that selected crystalline block copolymers can be periodically decorated along CNTs. This facile technique opens a gateway to periodic patterning on 1-D nanomaterials.  相似文献   

4.
Polymer decoration on carbon nanotubes via physical vapor deposition   总被引:2,自引:0,他引:2  
The polymer decoration technique has been widely used to study the chain folding behavior of polymer single crystals. In this article, we demonstrate that this method can be successfully adopted to pattern a variety of polymers on carbon nanotubes (CNTs). The resulting structure is a two-dimensional nanohybrid shish kebab (2D NHSK), wherein the CNT forms the shish and the polymer crystals form the kebabs. 2D NHSKs consisting of CNTs and polymers such as polyethylene, nylon 66, polyvinylidene fluoride and poly(L-lysine) have been achieved. Transmission electron microscopy and atomic force microscopy were used to study the nanoscale morphology of these hybrid materials. Relatively periodic decoration of polymers on both single-walled and multi-walled CNTs was observed. It is envisaged that this unique method offers a facile means to achieve patterned CNTs for nanodevice applications.  相似文献   

5.
A comparative study of the effect of copolymer composition on nanohybrid shish‐kebab (NHSK) architecture on carbon nanotubes (CNTs) is presented. A semi‐crystalline amphiphilic di‐block copolymer, polyethylene‐b‐polyethylene glycol (PE‐b‐PEG) was used in this study. Copolymer composition was varied on the basis of the molecular weight of individual copolymers and the ratio between PE and PEG. NHSK structure was characterized using a combination of scanning and transmission electron microscopy. The mobility of PEG, which is determined by its chain length was found to have a significant impact on the periodic decoration of the copolymer on CNTs. With higher chain length or molecular weight, PEG chains provided better stability to micelles formed by the copolymer. Further, PEG assisted micellar stability to create a foundation for PE chains to interact and orient along the tube axis of CNTs as a function of the copolymer composition. It was found that the stability of NHSK architecture can also be changed over time at the same crystallization temperature. This work offers novel and fundamental insights towards the mobility of PEG in the copolymer and its disk‐shaped crystal's formation and micellar stability during crystallization with CNTs. This study provides a better understanding of a mechanically tunable NHSK where the architecture of copolymer crystals can be modified by adjusting the molecular weight of PEG.  相似文献   

6.
刘习奎 《高分子科学》2014,32(8):1052-1059
A green approach to the synthesis and morphological control of high performance polyimides and their nanohybrid shish-kebabs in glycerol through reaction-induced crystallization of nylon-salt-type monomers was reported. Crystalline polyimide nanoplates can be observed by direct polycondensation of pyromellitic acid with various kinds of aliphatic or aromatic diamines. With the existence of carbon nanotuhes, the polyimides can be successfully decorated on the surface of CNTs through a reaction-induced hetero-epitaxial crystallization process, and resulted in novel polyimide/CNT nanohybrid shish-kebabs (NHSKs) structures. The morphologies of the NHSKs can be fine-tuned through changing the concentration of monomers or the reaction temperature, especially through the introduction of dynamic imine chemistry, the formation process of NHSKs can be attributed to a soft epitaxy mechanism. Thus a green approach for the synthesis of high performance polyimides and their CNT based nanohybrid structures was explored, which should be of great value for their applications in high performance reinforced nanocomposites.  相似文献   

7.
利用聚偏氟乙烯(PVDF)微小结晶的物理交联点作用,制备了形状记忆性能优异的聚偏氟乙烯/丙烯酸酯聚合物(PVDF/ACM)共混材料,为提高其导电及导热性能,于其中引入了碳纳米管(CNT),系统研究了PVDF/ACM/CNT三元体系纳米复合材料的导热及导电性能。 结果表明,碳纳米管在PVDF/ACM体系中分散均匀;在基本保持其形状记忆性能的前提下,碳纳米管的加入使材料导热性能及导电性能有较大程度的提高:质量分数为4%的CNT使材料25 ℃的电阻值降低至5000 Ω/square,导热系数提高至0.157 W/(m·K)。  相似文献   

8.
Carbyne, an infinite carbon chain, has attracted much interest and induced significant controversy for many decades. Recently, the presence of linear carbon chains (LCCs), which were confined stably inside double-wall carbon nanotubes (DWCNTs) and multiwall carbon nanotubes (MWCNTs), has been reported. In this study, we present a novel method to produce LCCs in a film of carbon nanotubes (CNTs). Our transmission electron microscopy and Raman spectroscopy revealed the formation of a bulk amount of LCCs after electric discharge of CNT films, which were used as field emission cathodes. The LCCs were confined inside single-wall CNTs as well as DWCNTs. Furthermore, two or three LCCs in parallel with each other are encapsulated when the inner diameter of CNT is larger than approximately 1.1 nm.  相似文献   

9.
Single-stranded DNA is an effective noncovalent dispersant for individual single-walled carbon nanotubes (CNTs) in aqueous solution, forming a CNT-DNA hybrid material that has advantages for CNT separations and applications. Atomic force microscopy (AFM) reveals a regular pattern on the surface of CNT-DNA. We found this pattern to be independent of the length and sequence of the wrapping DNA, yet different from the structures observed for CNTs dispersed with sodium dodecyl sulfate in the absence of DNA. We wrapped CNTs with thiol-modified DNA to form stable conjugates of CNT-DNA and core/shell CdSe/ZnS quantum dots; AFM imaging of these conjugates identified for the first time the location of DNA on the CNT-DNA nanomaterial. Our results suggest that the AFM pattern of CNT-DNA is formed by helical turns (approximately 14-nm pitch) of wrapped DNA strands that are closely arranged end-to-end in a single layer along the CNT. This work demonstrates the useful functionalization of CNTs with quantum dots in a manner that avoids direct, destructive modification of the CNT surface and suggests nearly complete surface coverage of the nanotubes with DNA.  相似文献   

10.
Syndiotactic polystyrene (sPS) composites filled with well-dispersed multi-walled carbon nanotubes (CNTs) were readily prepared through a coagulation method. Fourier-transform infrared spectroscopy and wide-angle X-ray diffraction revealed the effect of CNTs on the polymorphism of sPS. When crystallized from the melted state, the formation of the β-form was always favored after CNT addition regardless of crystallization conditions (isothermal or non-isothermal). In the case where liquid nitrogen was used to quench the melt, the uncrystallized material that was not able to crystallize in the extremely short crystallization time crystallized in the α form upon subsequent cold crystallization. Regardless of the CNT content, the glass transition and equilibrium melting temperature of the sPS matrix were unchanged at ∼96 and 290 °C, respectively. With a gradual increase in CNT loading, the sPS crystallization rate initially increased but then reached a plateau value at high CNT concentrations because of the reduction in chain mobility. Moreover, the Avrami exponent was changed from 2.8 for samples at low CNT contents to 2.0 for samples with a CNT concentration above 0.1 wt.%, at which the rheological threshold was approached and a polymer-CNT hybrid network was formed. The enhanced crystallization kinetics was attributed to the high nucleating ability of CNTs to induce a transcrystalline layer (TCL) at its surface, as revealed by transmission electron microscopy. For composites with low levels of CNT, the growth of sPS spherulites in the bulk between CNTs prevailed. Provided that the CNT-related networks were developed, the two-dimensional growth of cylindrical TCL at the CNT surface became dominant and led to the expected Avrami exponent.  相似文献   

11.
Hierarchical carbon nanostructures (HCNs) comprising functionalized nanodiamond particles (ND) covalently bonded to carbon nanotubes (CNTs) through urea or ethylene diamine linkers were synthesized using wet chemistry technique. Atomic force microscopy, transmission electron spectroscopy, and scanning electron spectroscopy reveal the pearl-necklace-like morphology of new HCNs with up to 50% of the CNT surface decorated by ND particles. Nanocomposites fabricated using polyuria/polyurethane hybrid polymer matrix and 0.2 wt.% of HCNs as a reinforcing filler show a 64% increase in tensile and elongation strength at break relatively to neat polymer.  相似文献   

12.
李忠明  陈晨 《高分子科学》2012,30(6):879-892
The effect of the different geometrical dimensionality of two dimensional graphene nanosheets(2D GNSs) and one dimensional carbon nanotubes(1D CNTs) on the non-isothermal crystallization of an ethylene-vinyl acetate(EVA) copolymer at high loading(5 wt%) was studied.Transmission electron microscopy indicated a homogeneous dispersion of GNSs and CNTs in EVA obtained by a solution dispersion process.Fourier-transform infrared spectroscopy and differential scanning calorimetry measurements showed that 1D CNTs and 2D GNSs acted as effective nucleating agents,with a noticeably increased onset crystallization temperature of EVA.A high weight fraction of nano-fillers slowed the overall crystallization rate of composites.At the same crystallization temperature,the crystallization behavior of GNS/EVA composites was slowed compared to that of the CNT/EVA ones owing to larger nucleus barrier and activation energy of diffusion.Dynamic mechanical relaxation and rheology behavior of CNT/EVA and GNS/EVA composites demonstrated that the planar structure of the GNSs had an intensively negative effect on EVA chain mobility due to interactions between nanofillers and polymer chains,as well as spatial restriction.  相似文献   

13.
It is well known that carbon nanotubes (CNTs) have excellent electrical properties and can be used as the nanofiller in natural polymers to produce conductive CNT/polymer nanocomposites. In this study, the conductive behavior of CNT-reinforced natural polymer nanocomposites was investigated. The effect of CNT concentration on the conductivity of CNT/natural polymer nanocomposites was also investigated. The natural polymers used were plasticized starch (PS) and chitosan (CS). FTIR spectroscopy was used to examine the interactions between PS, CS, and CNTs. TEM analysis on both nanocomposites were made to study the dispersion states of CNTs in both polymers. The results showed that the surface resistivities of both CNT/PS and CNT/CS nanocomposites decreased steeply with increasing CNT concentration. Particularly, the CNT/CS nanocomposites showed a better conductivity than the CNT/PS composites at the same CNT concentration. The TEM result showed that CNT/CS nanocomposites had better dispersibility and formation of fully connected, three-dimensional network structures between the CNTs than the CNT/PS nanocomposites, which results in the superior conductive property of CNT/CS nanocomposites compared to the CNT/PS nanocomposites.  相似文献   

14.
不同直径碳纳米管的抗电化学氧化性   总被引:1,自引:0,他引:1  
本文比较了由化学气相沉积法制备的不同直径(在100 nm以内)的多壁碳纳米管(CNT)的抗电化学氧化性.将CNT电极于1.2 V(vs.RHE)下电氧化120 h,记录氧化电流~时间变化曲线;X射线光电子能谱(XPS)分析氧化前后CNT的表面化学组成.结果表明,随着CNT直径的减小,其氧化电流降低,但其中以为10~20 nm的CNT电极氧化电流最小,表面氧的增量也最小,即被氧化的程度最低,抗电化学氧化性最强.根据不同直径CNT的缺陷位、不定型碳的丰度和碳原子的应力能,分析了其抗电化学氧化性差异的原因.  相似文献   

15.
Nanohybrid shish?Ckebab (NHSK), induced by polyamide 66 (PA66) nanofiber, was successfully fabricated in high-density polyethylene (HDPE)/xylene solution via isothermal crystallization. The crystalline morphological features of NHSK were observed by scanning electron microscopy. In the structure of NHSK, PA66 nanofiber serves as shish and HDPE lamellae act as kebabs periodically surrounding the nanofiber. Additionally, it reveals that both HDPE solution concentration and crystallization time have significant effects on the size of HDPE kebab. That is, as the concentration and crystallization time increase, the diameter of the kebab increases. Moreover, when crystallization time further increases, the crystals decorated on PA66 nanofiber exhibit a three-dimensional growth (i.e., aggregate of crystallites) rather than a two-dimensional one (i.e., disk-like lamellae normal to the axis of nanofiber).  相似文献   

16.
The functions and structures of Mo/Ni/MgO catalysts in the synthesis of carbon nanotubes (CNTs) have been investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Thin 2-5-walled CNTs with high purities (over 90%) have been successfully synthesized by catalytic decomposition of CH(4) over Mo/Ni/MgO catalysts at 1073 K. It has been found that the yield of CNTs as well as the outer diameter or thickness correlates well with the contents of these three elements. The three components Mo, Ni, and MgO are all necessary to synthesize the thin CNTs at high yields since no catalytic activity was observed for CNT synthesis when one of these components was not present. The outer diameter of the CNTs increases from 4 to 13 nm and the thickness of graphene layers also increases with increasing Mo content at a fixed Ni content, while the inner diameter stays at 2-3 nm regardless of their contents. Furthermore, the average outer diameter is in good agreement with the average particle size of metal catalyst. That is, the thickness or the outer diameter can be controlled by selecting the composition of the Mo/Ni/MgO catalysts. XRD analyses have shown that Mo and Ni form a Mo-Ni alloy before CNT synthesis, while the Mo-Ni alloy phase is separated into Mo carbide and Ni. These alloy particles are supported on MgO cubic particles 15-20 nm in width. It has been found that only small Mo-Ni alloy particles 2-16 nm in size catalyze CNT synthesis, with larger particles over 15 nm exhibiting no activity. Mo carbide and Ni should play different roles in the synthesis of the thin CNTs, in which Ni is responsible for the dissociation of CH(4) into carbon and Mo(2)C works as a carbon reservoir.  相似文献   

17.
We report the fabrication of a novel carbon structure consisting of uniform carbon nanotubes formed in the nanochannels of anodic aluminum oxide (AAO) templates, with the surface side open and connected by a uniform carbon sheet. The uniformity of the fabricated CNT arrays, plus the carbon film on the AAO surface interconnecting the open ends of all CNTs, constitute the major characteristics unique to our carbon structures. Some potential applications of such structures are noted.  相似文献   

18.
A big challenge in making a composite lies in achieving individual‐nanotube dispersion of carbon nanotubes (CNTs) in a polymer matrix, without aggregation and entanglement and excellent interfacial adhesion between the CNTs and the polymers matrix. In this communication, using polyethylene glycol‐200, we successfully prepared CNT‐reinforced polyimide composites that exhibit individual‐nanotube dispertion in the matrix at high‐loading CNT's. The content of CNTs in a composite can reach 43 wt%. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Owing to the unique structure of zigzag (ZZ) carbon nanotubes (CNTs), their ring‐by‐ring growth behavior is different from that of chiral or armchair (AC) CNTs, on the rims of which kinks serve as active sites for carbon attachment. Through first‐principle calculations, we found that, because of the high energy barrier of initiating a new carbon ring at the rim of a ZZ CNT, the growth rate of a ZZ CNT is proportional to its diameter and significantly (10–1000 times) slower than that of other CNTs. This study successfully explained the broad experimental observation of the lacking of ZZ CNTs in CNT samples and completed the theory of CNT growth.  相似文献   

20.
In this study, covalent functionalization of carbon nanotubes (CNTs) was accomplished by surface-initiated epoxide ring-opening polymerization. FT-IR spectra showed that polyether and epoxide group covalently attached to the sidewalls of CNTs. TGA results indicated that the polyether was successfully grown from the CNT surface, with the final products having a polymer weight percentage of ca. 14-74 wt%. The O/C ratio of CNTs increased significantly from 5.1% to 29.8% after surface functionalization of CNTs. SEM and TEM images of functionalized CNTs exhibited that the tubes were enwrapped by polymer chains with thickness of several nanometers, forming core-shell structures with CNTs at the center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号