首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The through-hole porous anodic aluminum oxide (AAO) membranes were fabricated by a simple two-step anodization of aluminum in 0.3?M oxalic acid, 0.3?M sulfuric acid, and 2?wt.% phosphoric acid solutions under different operating conditions followed by the removal of the remaining Al substrate and the pore opening/widening process. The effect of duration of the second anodizing step on the thickness of the porous oxide layer and the influence of other anodizing conditions such as applied voltage, type of electrolyte, and purity of the substrate on the rate of porous oxide growth were discussed in detail. The pore opening procedure for all synthesized membranes was optimized, and the influence of the duration of chemical etching on structural features of AAO membranes, especially pore diameter, was studied. The rate of pore widening was established for AAO membranes formed in various anodizing electrolytes and for different temperatures of 5?wt.% H3PO4 used for alumina dissolution.  相似文献   

2.

The through-hole porous anodic aluminum oxide (AAO) membranes were fabricated by a simple two-step anodization of aluminum in 0.3 M oxalic acid, 0.3 M sulfuric acid, and 2 wt.% phosphoric acid solutions under different operating conditions followed by the removal of the remaining Al substrate and the pore opening/widening process. The effect of duration of the second anodizing step on the thickness of the porous oxide layer and the influence of other anodizing conditions such as applied voltage, type of electrolyte, and purity of the substrate on the rate of porous oxide growth were discussed in detail. The pore opening procedure for all synthesized membranes was optimized, and the influence of the duration of chemical etching on structural features of AAO membranes, especially pore diameter, was studied. The rate of pore widening was established for AAO membranes formed in various anodizing electrolytes and for different temperatures of 5 wt.% H3PO4 used for alumina dissolution.

  相似文献   

3.
中孔复合锆-铝氧化物微球的制备及其正相色谱性能研究   总被引:2,自引:0,他引:2  
复合氧化物通常表现出与单一氧化物不同的物理化学性质(如晶体结构、孔结构和表面性质等方面),已广泛用作催化剂、吸附剂和离子交换剂。1993年,Kaneko等采用共沉淀法制备的SiO2-TiO2,SiO2-Al2O3等复合氧化物的环境保护、痕量富集、氨基酸分离等方面取得较好的应用效果。但复合氧化物作为液相色谱固定相的研究很少报道。近年来,我们从制备、表征到正相、反相色谱性能等方面对MgO-ZrO2和SiO2-ZrO2复合氧化物作为色谱填料进行了系统的研究,发现MgO和SiO2掺杂可以有效地改善ZrO2的孔结构,提高柱效。本文用溶胶-凝胶方法制备了质量投料比m(硝酸铝):m(氧氯化锆)=20:64的ZrO2-Al2O3复合氧化物微球,考察酸腐蚀前后其晶形、表面酸碱性和孔容、孔径的变化,以及它们的正相色谱性能。  相似文献   

4.
Copper indium diselenide nanorod arrays were electrodeposited on tungsten/silicon rigid substrates using porous anodic alumina as growth template. The porous anodic alumina templates were prepared by anodizing aluminum films which were sputtered onto the tung-sten/silicon substrates. A selective chemical etching was used to penetrate the barrier layer at the bottom of the alumina channels before electrodeposition, which enables direct elec-trical and chemical contact with the underside substrate electrode. The as-deposited sam-ples were annealed at 450 oC in vacuum. Scanning electron microscopy revealed that the nanorods were dense and compact with diameter of about 100 nm, length of approximate 1 μm, and the aspect ratio of 10. X-ray diffraction, micro-Raman spectroscopy, and highresolution transmission electron microscopy showed that chalcopyrite polycrystalline struc-ture and high purity CuInSe2 nanorods were obtained. The grain size was large in the rod axial direction. Energy-dispersive X-ray spectroscopy showed the composition was nearly stoichiometric. The energy band gap of this nanorod arrays was analyzed by fundamental absorption spectrum and was evaluated to be 0.96 eV.  相似文献   

5.
The kinetics of growth of porous anodic alumina films in pure H2SO4, in mixtures of H2SO4 and Al2(SO4)3 and in Al(HSO4)3, NaHSO4 and KHSO4 electrolytes were studied. The latent physicochemical processes at the pore base surface/electrolyte interface, across the barrier layer, inside the metal/oxide interface and at the pore wall surface/electrolyte interface and their mechanisms were revealed. High field strength equations were formulated describing the ionic migrations from the pore base surface. These showed that, at constant current density and temperature, the inverse of the pore base square diameter depends linearly on the inverse of the H+ activity in the anodizing solution and that this diameter increases with H+ activity, in agreement with the experimental results. The mechanism of electrolyte anion incorporation inside the barrier layer and the real distribution of the anion concentration across both the barrier layer and pore walls were deduced. The effects of the different kinds and concentrations of the electrolyte anions and cations on both the above processes and their mechanisms were also examined. Electronic Publication  相似文献   

6.
This paper presents a part of our work on understanding the effect of nanoscale pore space confinement on ion sorption by mesoporous materials. Acid-base titration experiments were performed on both mesoporous alumina and alumina particles under various ionic strengths. The point of zero charge (PZC) for mesoporous alumina was measured to be approximately 9.1, similar to that for nonmesoporous alumina materials, indicating that nanoscale pore space confinement does not have a significant effect on the PZC of pore surfaces. However, for a given pH deviation from the PZC, (pH-PZC), the surface charge per mass on mesoporous alumina was as much as 45 times higher than that on alumina particles. This difference cannot be fully explained by the surface area difference between the two materials. Our titration data have demonstrated that nanoscale confinement has a significant effect, most likely via the overlap of the electric double layer (EDL), on ion sorption onto mesopore surfaces. This effect cannot be adequately modeled by existing surface complexation models, which were developed mostly for an unconfined solid-water interface. Our titration data have also indicated that the rate of ion uptake by mesoporous alumina is relatively slow, probably due to diffusion into mesopores, and complete equilibration for sorption could take 4-5 min. A molecular simulation using a density functional theory was performed to calculate ion adsorption coefficients as a function of pore size. The calculation has shown that as pore size is reduced to nanoscales (<10 nm), the adsorption coefficients of ions can vary by more than two orders of magnitude relative to those for unconfined interfaces. The prediction is supported by our experimental data on Zn sorption onto mesoporous alumina. Owing to their unique surface chemistry, mesoporous materials can potentially be used as effective ion adsorbents for separation processes and environmental cleanup.  相似文献   

7.
We describe a new synthetic approach to fabricate Ni/Cu nanocable arrays by co-depositing nickel and copper atoms into the pores of anodic alumina membranes and to fabricate Ni nanotube arrays by selectively etching the Cu cores from the Ni/Cu nanocable arrays. The formation of the Ni-shelled Ni/Cu nanocables is attributed to the Ni ions adsorbed on the pore walls by a chemical complexation through hydroxyl groups. By varying electrodepositon parameters in this technique, we can control the lengths of nanocables and nanotubes, the shell thickness of the nanocables, and the wall thickness and surface morphology of the nanotubes.  相似文献   

8.
Layer‐by‐layer assemblies consisting of alternating layers of nitrilotris(methylene)triphosphonic acid (NTMP), a polyfunctional corrosion inhibitor, and zirconium(IV) were prepared on alumina. In particular, a nine‐layer (NTMP/Zr(IV))4NTMP stack could be constructed at room temperature, which showed a steady increase in film thickness throughout its growth by spectroscopic ellipsometry up to a final thickness of 1.79 ± 0.04 nm. At higher temperature (70 °C), even a two‐layer NTMP/Zr(IV) assembly could not be prepared because of etching of the alumina substrate by the heated Zr(IV) solution. XPS characterization of the layer‐by‐layer assembly showed a saw tooth pattern in the nitrogen, phosphorus, and zirconium signals, where the modest increases and decreases in these signals corresponded to the expected deposition and perhaps removal of NTMP and Zr(IV). Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) confirmed the attachment of the NTMP molecule to the surface through PO?, PO2?, PO3?, and CN? signals. Increasing attenuation of the Al signal from the substrate after deposition of each layer was observed by both XPS and ToF‐SIMS. Essentially complete etching of the alumina by the heated Zr(IV) solution was confirmed by spectroscopic ellipsometry, XPS, and ToF‐SIMS. Atomic force microscopy revealed that all the films were smooth with Rq roughness values less than 0.5 nm. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
锆-铝复合氧化物固定相的制备、表征及其色谱性能考察   总被引:4,自引:0,他引:4  
利用溶胶-凝胶技术制备了无机杂化材料锆铝复合氧化物,对其物理化学性能进行了研究。平均孔径5-8nm,并且孔径分布较窄;表面呈现酸碱两性;氧化铝的掺杂可以提高填料的经表面积。同时以酸性、碱性和中性化合物为溶质,对锆铝填料的正相色谱性能和烷基膦酸改性的锆铝填料的反相色谱性能进行了系统评价,研究结果表明,锆铝填料适合于碱性化合物分离,并且其分离选择性在一定程度上随流动相性质而变;烷基膦酸改性的锆铝填料则呈现出反相色谱特征。  相似文献   

10.
ZnO-Al2O3 composite particles composed of ZnO nanosheets(thickness of 40-80 nm) on alumina particles were prepared by heterogeneous precipitation method using bayerite seed particles.The asprepared composite particles were characterized in terms of crystal structure,morphology,surface area and pore volume.The composite particles were used as sorbent for H2S adsorption at low temperature, and were compared with pure ZnO sorbent.The composite sorbent showed a greater sulfur adsorption capacity(0.052 g/g) than pure form of ZnO(0.028 g/g).This significant improvement was mainly attributed to higher surface area,more pore volume and unique morphology in nanoscale,which were also obtained by low cost presented method in this work for synthesis of ZnO sorbent supported on alumina particles.  相似文献   

11.
Streaming potential variation with pressure measured through poly(ethylene terephthalate) track-etched membranes of different pore sizes led to the determination of an apparent interfacial potential zetaa in the presence of 10-2 M KCl. The variation of zetaa with the pore radius r0 is interpreted by (i) the electric double layer overlap effect and (ii) the presence of a conductive gel layer. We propose a method which integrates both effects by assuming a simple model for the conductive gel at the pore wall. We observed the following three domains of pore size: (i) r0 > 70 nm, where surface effects are negligible; (ii) approximately 17 nm < r0 < 70 nm, where the pore/solution interface could be described as a conductive gel of thickness around 1 nm; (iii) r0 < approximately 17 nm, which corresponds to the region strongly damaged by the ion beam and is not analyzed here. The first one (zeta = -36.2 mV) corresponds to the raw material when etching has completely removed the ion beam predamaged region, which corresponds to the second intermediate domain (zeta = -47.3 mV). There the conductance of the gel layer deduced from the treatment of streaming potential data was found to be compatible with the number of ionic sites independently determined by the electron spin resonance technique.  相似文献   

12.
采用铝溶胶晶种引入、结合相分离的方法制备了具有三维贯通多级孔道结构的大孔氧化铝材料。采用扫描电镜(SEM)、X射线衍射(XRD)、N2吸附-脱附、压汞、核磁共振波谱(NMR)等测试方法对所得材料进行了表征。结果表明,该氧化铝材料具有200-600 nm的均匀分布且贯通的连续大孔孔道,经550℃焙烧即可得到结晶态γ-氧化铝。大孔氧化铝比表面积达到366 m2/g,具有以5 nm及400 nm为中心的较为集中的介孔-大孔多级孔道分布。焙烧后的样品中,铝具有四、六两种配位状态。制备过程中,聚环氧乙烷(PEO)作为诱导剂引发固-液两相分离,形成具有三维贯通多级孔道结构大孔氧化铝,而凝胶中引入铝溶胶时,AlOOH晶粒与铝交联水合物均相伴生,在凝胶过程诱导铝交联水合物转变为AlOOH,最终使大孔氧化铝在较低的焙烧温度即可转化为γ-氧化铝。  相似文献   

13.
Stable polymeric and colloidal boehmite sols were prepared by sol–gel process through controlled hydrolysis/condensation reactions. The particle sizes of the colloidal sols were in the 12–25 nm range depending on the process parameters and about 2 nm for polymeric sols. The presence of a significant increase in the microporosity content of the heat treated polymeric membranes relative to the mesoporous colloidal membranes might make the design of thermally stable microporous alumina membranes with controlled pore structures possible. The phase structure evolution in the 600–800 °C range had shown that the crystallization of the gamma alumina in the amorphous matrix starts at about 800 °C. This indicated that the pore structure stability may be enhanced through processing up to this relatively high temperature in polymeric alumina derived unsupported membranes. The permeance values of the two and three layered colloidal alumina membranes were observed to be independent of pressure which implies that the dominant gas transport mechanism is Knudsen diffusion in these structures. This was also supported by the 2.8 nm BJH pore sizes of the colloidal membranes. The Knudsen diffusion equation derived permeances of the polymeric alumina membranes with thicknesses of about 300 nm were determined to be very close to the experimentally determined permeance values.  相似文献   

14.
以微米级SiO为原料,通过简单的高温煅烧、碳包覆和酸刻蚀制备多孔氧化硅/硅/碳复合材料,复合材料比表面积和平均孔径分别为32.9 m~2/g和3 nm。纳米硅分散在缓冲介质氧化硅多孔体系中,表面包覆一层薄而均匀的碳层。所得的复合材料具有较好的循环稳定性,在0.3 m A/g下,50次循环后可逆容量保持在645.1 m A·h/g。多孔结构、氧化硅缓解了硅在脱嵌锂过程的体积膨胀,碳层提高了复合材料的导电性和结构稳定性。  相似文献   

15.
The transport of pure gases and of binary gas mixtures through a microporous composite membrane is discussed. The membrane consists of an alumina support with a mean pore diameter of 160 nm and an alumina top (separation) layer with pores of 2-4 nm. The theory of Knudsen diffusion, laminar flow and surface diffusion is used to describe the transport mechanisms. It appears for the composite membrane that Knudsen diffusion occurs in the toplayer and combined Knudsen diffusion/laminar flow in the support at pressure levels lower than 200 kPa. For the inert gas mixture H2/N2 separation factors near 3 could be achieved which is 80% of the theoretical Knudsen separation factor. This value is shown to be the product of the separation factor of the support (1.9) and of the top layer (1.5). The value for the top layer is rather low due to the relatively small pressure drop across this layer. This situation can be improved by using composite membranes consisting of three or more layers resulting in a larger pressure drop across the separation layer.CO2 surface diffusion occurs on the internal surface of the investigated alumina membranes. At 250-300 K and a pressure of 100 kPa the contribution of surface diffusion flow measured by counterdiffusion is of the same order of magnitude as that resulting from gas diffusion. The adsorption energy amounts —25 kJ/mol and the surface coverage is 20% of a monolayer at 293 K and 100 kPa. The calculated surface diffusion coefficient is estimated to be 2-5 x 10-9 m2/sec.Modification of the internal pore surface with MgO increases the amount of adsorbed CO2 by 50-100%.Modifications with finely dispersed silver are performed to achieve O2 surface diffusion.  相似文献   

16.
Two mesoporous alumina samples were synthesized using the sol–gel method, and these samples were tested as catalysts in trichloroethylene combustion reaction. One alumina sample was doped with Fe to study the influence of a small amount of this agent on the characteristics and properties of alumina as a catalyst. Both catalysts (pure alumina and alumina doped with Fe) were thoroughly characterized by different techniques, such as DTA/TGA, FT-IR, XRD, SEM and TEM, and the porous characterization was conducted using a N2 physisorption technique. The doping agent presented a particular influence on the morphology and textural porosity in the alumina catalyst and therefore, it exhibited different catalytic behavior than the pure alumina catalyst. For both catalysts, the crystalline phase of γ-alumina was reported using XRD technique, and the crystallite size ranged from 7.8 to 12.8 nm. Using TEM images, the alumina catalyst doped with Fe revealed to contain a mixture of three types of iron oxide (maghemite, magnetite and hematite), mainly as roughly spherical nanoparticles. For both alumina catalysts, trichloroethylene catalytic combustion was conducted on a packed bed reactor in air at a temperature range of 50 to 600 °C. The alumina catalyst doped with Fe showed a higher catalytic activity than pure alumina, mainly due to the presence of micropores and grain morphology of flat faces.  相似文献   

17.
采用催化化学气相沉积法, 以Ni为催化剂、乙烯作为碳源, 制备了三叶草型氧化铝/碳纳米纤维复合材料, 并通过N2物理吸附、扫描电子显微镜、X射线衍射分析和强度测试对氧化铝/碳纳米纤维复合材料的形貌和物理性能进行了表征. 结果表明, 三叶草型氧化铝表面生长了碳纳米纤维层, 两者紧密结合, 形成的氧化铝/碳纳米纤维复合材料具有较高的比表面积(>187 m2·g-1)和孔体积(>0.24 cm3·g-1), 孔道直径在3-10 nm 的孔体积超过总孔体积的85%, 颗粒的侧压强度大于6 N·mm-1, 可以满足工业催化剂载体对强度的要求. 复合材料是一种有良好的工业应用前景的中孔催化材料, 其中碳纳米纤维层的厚度可通过催化剂Ni负载量和生长时间的调节加以控制.  相似文献   

18.
Mesoporous γ-aluminas with large pore size(up to 19 nm,denoted as MA19) are prepared from dispersed pseudo-boehmite using pluronic P123 as template.It is found that these mesoporous alumina supported rhenium oxide catalysts were more active and have far longer working life-span in gas-phase metathesis of 1-butene and 2-butene to propene than rhenium oxide on conventional alumina with small pore size(5 nm).At 60°C and atmospheric pressure with WHSV = 1 h-1,the similar stable conversions of butene(ca.55%) for all the 13 wt% Re 2 O 7 /alumina catalysts were obtained near the chemical equilibrium,and the stable working life-spans of Re 2 O 7 /MA19 were far longer than that of Re 2 O 7 /Al 2 O 3,being about 70 h and 20 h,respectively.  相似文献   

19.
The comparative study of etching characteristics and mechanisms for TiO2 thin films in CF4 + Ar, Cl2 + Ar and HBr + Ar inductively coupled plasmas was carried out. The etching rates for TiO2, Si and photoresist were measured as functions of gas mixing ratios at fixed gas pressure (10 mTorr), input power (800 W) and bias power (300 W). It was found that the maximum TiO2 etching rate of ~130 nm/min correspond to pure CF4 plasma while an increase in Ar fraction in a feed gas results in the monotonic non-linear decrease in the TiO2 etching rates in all three gas mixtures. Plasma diagnostics by Langmuir probes and 0-dimensional (global) plasma modeling supplied the data on the densities of plasma actives specie as well as on particle and energy fluxes to the etched surface. It was concluded that, under the given set of experimental conditions, the TiO2 etching kinetics in all gas systems correspond to the ion-assisted chemical reaction with a domination of the chemical etching pathway. It was found also that the differences in the absolute TiO2 etching rates correlate with the energy thresholds for TiO2 + F, Cl or Br reaction, and the reaction probabilities for F, Cl and Br atoms exhibit the different changes with the ion energy flux according to the volatility of corresponding etching products.  相似文献   

20.
Porous silicon (PSi) prepared from Pt metal-assisted chemical etching (MaCE) was demonstrated to possess higher hydrosilylation efficiency (~57%) than anodized PSi (~11%) by surface reaction with ω-undecenyl alcohol (UO).Deconvolution of the SiHx (x=1-3) stretching bands revealed the abundance of SiH 2 species on MaCE PSi was 53%,~10% higher than on anodized samples,while both of SiH 1 and SiH 3 were ~5% lower correspondently on MaCE PSi than on anodized samples.The surface SiHx abundances were suggested to account for the higher hydrosilylation efficiency on MaCE PSi.Optimization of Pt-assisted chemical etching parameters suggested a 7-15 nm thick Pt-coating and an etching time of 3-10 min for biochip applications.Scanning electron microscopy images revealed that an isotropic top meso-porous layer was beneficial for hydrosilylation and long-term durability under ambient conditions.To end,an example of histidine-tagged protein immobilization and microarray was illustrated.Combining the materials’ property,surface chemistry,and micro-fabrication technology together,we envision that silicon based biochip applications have a prosperous future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号