首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper considers the dynamics of a classical problem in astrophysics, the behavior of spherically symmetric gravitational collapse starting from a uniform, density cloud of interstellar gas. Previous work on this problem proposed a universal self-similar solution for the collapse yielding a collapsed mass much smaller than the mass contained in the initial cloud. This paper demonstrates the existence of a second threshold—not far above the marginal collapse threshold—above which the asymptotic collapse is not universal. In this regime, small changes in the initial data or weak stochastic forcing leads to qualitatively different collapse dynamics. In the absence of instabilities, a progressing wave solution yields a collapsed uniform core with infinite density. Under some conditions the instabilities ultimately lead to the well-known self-similar dynamics. However, other instabilities can cause the density profile to become non-monotone and produce a shock in the velocity. In presenting these results, we outline pitfalls of numerical schemes that can arise when computing collapse.  相似文献   

2.
Spherically symmetric inhomogeneous dust collapse has been studied in higher dimensional space-time and the appearance of a naked singularity has been analyzed both for the non-marginal and the marginally bound cases. It has been shown that a naked singularity is possible for any arbitrary dimension in the non-marginally bound case. For the marginally bound case we have examined the radial null geodesics from the singularity and found that a naked singularity is possible up to five dimensions.  相似文献   

3.
We investigate the late-time evolution of theYang-Mills field in the self-gravitating backgrounds:Schwarzschild and Reissner-Nordstrom spacetimes. Thelate-time power-law tails develop in the threeasymptotic regions: the future timelike infinity, thefuture null infinity and the black hole horizon. Inthese two backgrounds, however, the late-time evolutionhas quantitative and qualitative differences. In the Schwarzschild black hole background, thelate-time tails of the Yang-Mills field are the same asthose of the neutral massless scalar field withmultipole moment l = 1. The late-time evolutionis dominated by the spacetime curvature. When the backgroundis the Reissner-Nordstrom black hole, the late-timetails have not only a smaller power-law exponent, butalso an oscillatory factor. The late-time evolution is dominated by the self-interacting term ofthe Yang-Mills field. The cause responsible for thedifferences is revealed.  相似文献   

4.
The previous work [1–3] was aimed at demonstrating the natural and intrinsic relationship between the fibered Finslerian framework and the Yang-Mills gauge field theroy based on the SU(2)-group of internal symmetries. In the present paper we continue the approach and find a particular solution for the Finslerian-extended Einstein equations that relates to static and spherically symmetric gravitational field. Our treatment has been stimulated by the following question: does the Finslerian approach predict the effect of speed-of-light change under transition from one inertially moving laboratory to another? The accurate solution which answers this question in positive has been found.  相似文献   

5.
By using the Einstein-Tolman expression of the energy-momentum pseudo-tensor, the energy density ofthe gravitational field of the static spherically symmetric neutron stars is calculated in the Cartesian coordinate system.It is exciting that the energy density of gravitational field is positive and rational. The numerical results ot the energydensity of gravitational field of neutron stars are calculated. For neutron stars with M = 2M , the ratio of the energydensity of gravitational field to the energy density of pure matters would be up to 0.54 at the surface.  相似文献   

6.
Previously, the gravitational lens of a wormhole was introduced by various researchers. Their treatment was focused basically on the lens signature that describes wormhole geometrical character such as the differences from a black hole or between any various types of wormhole models. The braneworld scenario provides the idea of spacetime with underlying extra-dimensions. The inclusion of extra-dimensional terms in the lens object spacetime line element will result in some variation in the expression for its gravitational lens deflection angle.Thus in this paper we investigate such variation by deriving this deflection angle expression. As such, this paper not only shows the existence of such variation but also suggests the potential utilization of gravitational lensing to prove the existence of extra dimensions by studying the deflection angle characteristic in accordance with the spacetime expansion rate of the universe.  相似文献   

7.
By using the Einstein-Tolman expression of the energy-momentum pseudo-tensor, the energy density of the gravitational field of the static spherically symmetric neutron stars is calculated in the Cartesian coordinate system.It is exciting that the energy density of gravitational field is positive and rational The xmmerical results of the energy density of gravitational field of neutron stars are calculated. For neutron stars with M=2M, the ratio of the energy density of gravitational field to the energy density of pure matters would be up to 0.54 at the surface.  相似文献   

8.
This paper is devoted to investigate the gravitational collapse in the framework of Chern-Simon (CS) modified gravity. For this purpose, we assume the spherically symmetric metric as an interior region and the Schwarzchild spacetime is considered as an exterior region of the star. Junction conditions are used to match the interior and exterior spacetimes. In dynamical formulation of CS modified gravity, we take the scalar field Θ as a function of radial parameter r and obtain the solution of the field equations. There arise two cases where in one case the apparent horizon forms first and then singularity while in second case the order of the formation is reversed. It means the first case results a black hole which supports the cosmic censorship hypothesis (CCH). Obviously, the second case yields a naked singularity. Further, we use Junction conditions have to calculate the gravitational mass. In non-dynamical formulation, the canonical choice of scalar field Θ is taken and it is shown that the obtained results of CS modified gravity simply reduce to those of the general relativity (GR). It is worth mentioning here that the results of dynamical case will reduce to those of GR, available in literature, if the scalar field is taken to be constant.  相似文献   

9.
A spherically symmetric collapse of a fluid with bulk viscosity and heat conduction is investigated. It is found that the junction conditions of the limited region of a radiation zone require a faster decay of a collapsing star.  相似文献   

10.
In Schwarzschild spacetime the value r = 3m of the radius coordinate is characterized by three different properties: (a) there is a light sphere, (b) there is centrifugal force reversal, (c) it is the upper limiting radius for a non-transparent Schwarzschild source to act as a gravitational lens that produces infinitely many images. In this paper we prove a theorem to the effect that these three properties are intimately related in any spherically symmetric static spacetime. We illustrate the general results with some examples including black-hole spacetimes and Morris-Thorne wormholes.  相似文献   

11.
We consider the dynamical stability of a class of static, spherically symmetric solutions of the nonsymmetric gravitational theory. We numerically reproduce the Wyman solution and generate new solutions for the case where the theory has a nontrivial fundamental length scale -1. By considering spherically symmetric perturbations of these solutions we show that the Wyman solutions are generically unstable.  相似文献   

12.
13.
We have been studied the model of light Galileon with translational shift symmetry ?? + c. The matter Lagrangian is presented in the form \(\mathcal {L}_{\phi }= -\eta (\partial \phi )^{2}+\beta G^{\mu \nu }\partial _{\mu }\phi \partial _{\nu }\phi \). We have been addressed two issues: the first is that, we have been proven that, this type of Galileons belong to the modified matter-curvature models of gravity in type of \(f(R,R^{\mu \nu }T_{\mu \nu }^{m})\). Secondly, we have been investigated exact solution for spherically symmetric geometries in this model. We have been found an exact solution with singularity at r = 0 in null coordinates. We have been proven that the solution has also a non-divergence current vector norm. This solution can be considered as an special solution which has been investigated in literature before, in which the Galileon’s field is non-static (time dependence). Our scalar-shift symmetrized Galileon has the simple form of ? = t, which it is remembered by us dilaton field.  相似文献   

14.
We consider the subject of self-binding in static, spherically symmetric objects consisting of a charged fluid. We have shown previously that in the case of a perfect fluid, only the localized part of the mass contributes to gravitational self-binding of such objects and that in the limiting case of objects comprised purely of electromagnetic mass, there is no gravitational binding. Here, we extend this result to the more general case of an anisotropic fluid. Our inspection of the Oppenheimer–Volkov equation allows tracking of both gravitational and non-gravitational contributions to binding of spherically symmetric objects and shows that those with pure electromagnetic mass cannot exist.  相似文献   

15.
In this paper, the Rindler-like horizon in a spherically symmetric spacetime is proposed. It is showed that just like the Rindler horizon in Minkowski spacetimes, there is also a Rindler-like horizon to a family of special observers in general spherically symmetric spacetimes. The entropy of this type of horizon is calculated with the thin film brick-wall model. The significance of entropy is discussed. Our results imply some connection between Bekeinstein-Hawking entropy and entanglement entropy.  相似文献   

16.
Si-Jie Gao has recently investigated Hawking radiation from spherically symmetrical gravitational collapse to an extremal R-N black hole for a real scalar field. Especially he estimated the upper bound for the expected number of particles in any wave packet belonging to Hout spontaneously produced from the state |0>in, which confirms the traditional belief that extremal black holes do not radiate particles. Making some modifications, we demonstrate that the analysis can go through for a charged scalar field.  相似文献   

17.
We present the analytic spherically symmetric solution of the Einstein equations, which has de Sitter asymptotics for both r and r 0. This two-lambda spherically symmetric solution is globally regular. At the range of mass parameter Mcr1 < M < Mcr2 it has three horizons and describes a neutral black hole whose singularity is replaced by a cosmological constant of Planck or GUT scale, at the background of small . Global structure of space-time contains an infinite sequence of black and white holes, de Sitter-like past and future regular cores (with + at r 0) replacing singularities, asymptotically de Sitter external universes (with for r ), and spacelike infinities. In the range of mass parameter M < Mcr1 we have a one-horizon solution describing recovered selfgravitating particle-like structure at the background of small , and for M > Mcr2 another one-horizon configuration which can be called de Sitter bag. The solutions with M = Mcr1 and M = Mcr2 represent two extreme states of a neutral nonsingular cosmological black hole.  相似文献   

18.
The ergodic properties of many-body systems with repulsive-core interactions are the basis of classical statistical mechanics and are well established. This is not the case for systems of purely-attractive or gravitational particles. Here we consider two examples, (i) a family of one-dimensional systems with attractive power-law interactions, , and (ii) a system of N gravitating particles confined to a finite compact domain. For (i) we deduce from the numerically-computed Lyapunov spectra that chaos, measured by the maximum Lyapunov exponent or by the Kolmogorov–Sinai entropy, increases linearly for positive and negative deviations of ν from the case of a non-chaotic harmonic chain (ν = 2). For there is numerical evidence for two additional hitherto unknown phase-space constraints. For the theoretical interpretation of model (ii) we assume ergodicity and show that for a small-enough system the reduction of the allowed phase space due to any other conserved quantity, in addition to the total energy, renders the system asymptotically stable. Without this additional dynamical constraint the particle collapse would continue forever. These predictions are supported by computer simulations. PACS numbers: 05.45.Pq, Numerical simulation of chaotic systems, 05.20.−y, Classical statistical mechanics, 36.40.Qv, Stability and fragmentation of clusters, 95.10.Fh, Chaotic dynamics.  相似文献   

19.
In this paper, we investigated the cylindrical gravitational collapse with heat flux by considering the appropriate geometry of the interior and exterior spacetimes. For this purpose, we matched collapsing fluid to an exterior containing gravitational waves.The effects of heat flux on gravitational collapse are investigated and matched with the results obtained by Herrera and Santos (Class. Quantum Gravity 22:2407, 2005).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号