首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A simple, rapid, sensitive and selective method for simultaneously determining xanthopterin and isoxanthopterin content in human urine has been developed using synchronous fluorescence spectroscopy based on their intrinsic fluorescence. The synchronous fluorescence spectra were obtained with Δλ = 65 nm in a pH 8.5 KH2PO4-NaOH buffer solution. The detected wavelengths of quantitative analysis were set at 410 nm for xanthopterin and 325 nm for isoxanthopterin, respectively. Pretreatment of urine samples only was filtrated through a 0.45 μm membrane filter, which was free from the tedious separation procedures. Under optimized conditions, the limits of detection (LOD) were 0.94 ng/mL for xanthopterin and 0.48 ng/mL for isoxanthopterin. The recoveries ranged from 88.0% to 103.8 % for healthy and cancer urine samples, with coefficient of variation between 2.09% and 7.06%. The proposed method has been successfully applied to the simultaneous analysis for xanthopterin and isoxanthopterin in human urine. The results showed that the average level of isoxanthopterin was significantly elevated in urine excreted by stomach cancer patients (P < 0.01), while no significant change of xanthopterin level was found between stomach cancer patients and healthy individuals. This potentially indicates that an increase in amounts of isoxanthopterin can be associated with the presence of stomach cancer.  相似文献   

3.
A rapid, simple and highly sensitive first derivative synchronous fluorometric method has been developed for the simultaneous analysis of binary mixture of sulpiride (SUL) and mebeverine hydrochloride (MEB). The method is based upon measurement of the synchronous fluorescence intensity of these drugs at ∆λ = 100 nm in water. The different experimental parameters affecting the fluorescence of the two drugs were carefully studied and optimized. The fluorescence-concentration plots were rectilinear over the range of 0.05–1 μg/mL and 0.2–3.2 μg/mL for SUL and MEB respectively with lower detection limits (LOD) of 0.006 and 0.01 μg/mL and quantification limits (LOQ) of 0.0.02 and 0.05 μg/mL for SUL and MEB, respectively. The proposed method was successfully applied for the determination of the two compounds in synthetic mixtures and in commercial tablets. The high sensitivity attained by the proposed method allowed the determination of both of SUL and MEB metabolite (veratic acid) in real human plasma samples applying second derivative synchronous fluorometric technique. The mean% recoveries (n = 3) for both MEB metabolite (veratic acid) and SUL were 99.82 ± 2.53 and 98.84 ± 6.20 for spiked human plasma respectively, while for real human plasma, the mean% recoveries (n = 3) were 91.49 ± 4.25 and 91.36 ± 8.46 respectively.  相似文献   

4.
A rapid, simple and highly sensitive second derivative synchronous fluorometric method has been developed for the simultaneous analysis of binary mixture of cinnarizine (CN) and domperidone (DOM). The method is based upon measurement of the native fluorescence of these drugs at Δλ = 80 nm in aqueous methanol (50% V/V). The different experimental parameters affecting the native fluorescence of the studied drugs were carefully studied and optimized. The fluorescence-concentration plots were rectilinear over the range of 0.1 to 1.3 μg mL−1 and 0.1–3.0 μg mL−1 for CN and DOM, respectively with lower detection limits of 0.017 and 5.77 × 10−3 μg mL−1 and quantification limits of 0.058 and 0.02 μg mL−1 for CN and DOM. The proposed method was successfully applied for the determination of the studied compounds in synthetic mixtures and in commercial tablets. The results obtained were in good agreement with those obtained with reference methods. The high sensitivity attained by the synchronous fluorometric method allowed the determination of CN in real and spiked human plasma. The mean % recoveries in case of spiked human plasma (n = 3) were 96.39 ± 1.18 while that in real human plasma (n = 3) was 104.67 ± 4.16.  相似文献   

5.
Rapid direct and induced difference spectrophotometric methods for determination of pyrithioxin in single dosage forms (tablets and syrups) are reported. The direct methods depend upon measurement of the absorbance of pyrithioxin in different media at λmax i-e at 296 nm in 0.1 M hydrochloric acid, at 328 nm in citric acid-phosphate buffer of pH 7 and at 314 nm in 0.1 M sodium hydroxide. The mean percentage recovery of the authentic samples were 100.55±0.43, 101.21±0.58 and 100.29±0.64 respectively (P=0.05). The absorbance difference methods are based upon either measurement of the difference between the acid and the alkaline solutions i-e. Δ A (Alk-Acid) at 318 nm with an accuracy of 100.72±0.88 or the absorbance difference between the acid and neutral solutions i-e Δ A (pH 7-acid) at 328 nm with an accuracy of 100.31±0.68.  相似文献   

6.
We report the first simultaneous measurement of surface-confined and solution fluorescence correlation spectroscopy (FCS). We use an optical configuration for tightly focused excitation and separate detection of light emitted below (undercritical angle fluorescence, UAF) and above (supercritical angle fluorescence, SAF) the critical angle of total internal reflection of the coverslip/sample interface. This creates two laterally coincident detection volumes which differ in their axial extent. While detection of far-field UAF emission producesa standard confocal volume, near-field-mediated SAF produces a highly surface-confined detection volume at the coverslip/sample interface which extends only ~200 nm into the sample. A characterization of the two detection volumes by FCS of free diffusion is presented and compared with analytical models and simulations. The presented FCS technique allows to determine bulk solution concentrations and surface-near concentrations at the same time.  相似文献   

7.

A green, simple, quick and economical method is implemented for the first time for the simultaneous estimation of cetirizine (CTZ) and azelastine (AZE) as co-administered eye drops. The method relies on synchronous spectrofluorimetry with ?λ?=?60 nm. Cetirizine can be estimated at 231 nm and AZE can be measured at 294 nm, each at the other’s zero crossing point. All factors affecting the method were studied and properly optimized. Good correlation was obtained in the range of 0.1–2 µg mL?1 for both drugs. The limits of detection were 0.014 and 0.010 µg mL?1 and limits of quantitation were 0.043 and 0.029 µg mL?1 for CTZ and AZE, respectively. Moreover, ICH guidelines were carried out to validate the adopted method. The method was suitable for the analysis of CTZ and AZE in synthetic mixtures, eye drops and aqueous humor. The mean percentage of recoveries of CTZ and AZE in spiked aqueous humor were 99.83 and 99.37, respectively. Furthermore, Green Analytical Procedure Index (GAPI) and analytical Eco-scale approaches were used to evaluate the greenness of the suggested method.

  相似文献   

8.
A sensitive, rapid, and specific assay has been developed for the simultaneous determination of acetylsalicylic acid and caffeine in commercial tablets based on their natural fluorescence. The mixture of these drugs was resolved by first derivative synchronous fluorimetric technique using two scans. At Δλ=106 nm, using first derivative synchronous scanning, only acetylsalicylic acid yields a detectable signal at 316 nm (peak to zero method) which is unaffected by caffeine. At Δλ=30 nm, the signal of caffeine at 288 nm (peak to zero method) is not affected by acetylsalicylic acid. The range of application is between 0.021 and 41.62 μg ml−1 (correlation coefficient, R=0.9995) for acetylsalicylic acid and between 0.4486 and 44.86 μg ml−1 (correlation coefficient, R=0.99786) for caffeine. The recovery range of 98.40–102% for acetylsalicylic acid and 90–100.5% for caffeine from their synthetic mixture was reported. Overall recovery of both compounds about 97–99% for acetylsalicylic acid and 97–98% for caffeine was obtained from real sample analysis. The detection limits are 0.0013 μg ml−1 and 0.0306 μg ml−1 for acetylsalicylic acid and caffeine, respectively. The relative standard deviation (n=10) for 20 μg ml−1 of acetylsalicylic acid is 2.75% and for 2.2 μg ml−1of caffeine is 1.7%.  相似文献   

9.
In this present work, a fluorescence method for azithromycin (9-deoxo-9a-aza-9a-methyl-9a-homoerythromycin) determination in pharmaceutical formulations is proposed. The method is based on the synchronous fluorescence (Δλ?=?30 nm, 482 nm) produced when azithromycin is derivatized in strong acidic medium (9.0 mol L?1 HCl). The influence of the derivatization conditions (acid concentration, reaction time and temperature) was studied. Also, the possible reaction mechanism was discussed. In the optimized conditions, the method presented a limit of detection of 0.23 mg L?1 and a limit of quantification of 0.76 mg L?1. The developed procedure was successfully applied in the determination of azithromycin in pharmaceutical formulations.  相似文献   

10.
A simple, selective and sensitive luminescence method has been developed for the assay of etodolac (I), moxepril HCl (II) and fexofenadine HCl (III) in bulk drug and pharmaceutical formulations. The method is based on the luminescence sensitization of europium (Eu3+) by complexation with the studied drugs. The fluorescence intensities of the products were measured at 667 nm for (I) and at 615 for (II) and (III) while exciting at 276 for all the studied drugs. The fluorescence intensity was directly proportional to the concentration over the range (20–280), (40–240) and (30–80) ng/ml with limits of detection (LOD) = 0.93, 0.92 and 0.95 μg/ml for drugs I, II and III respectively. Optimum conditions for the formation of the complex in methanol were carefully studied. The proposed method was successfully applied for the assay of the studied drugs in pharmaceutical formulations with excellent recovery.  相似文献   

11.
A simple, sensitive and rapid spectrofluorometric method for determination of methocarbamol in pharmaceutical formulations and spiked human plasma has been developed. The proposed method is based on the measurement of the native fluorescence of methocarbamol in methanol at 313 nm after excitation at 277 nm. The relative fluorescence intensity-concentration plot was rectilinear over the range of 0.05–2.0 μg/mL, with good correlation (r = 0.9999), limit of detection of 0.007 μg/ mL and a lower limit of quantification of 0.022 μg/ mL. The described method was successfully applied for the determination of methocarbamol in its tablets without interference from co-formulated drugs, such as aspirin, diclofenac, paracetamol and ibuprofen, The results obtained were in good agreement with those obtained using the official method (USP 30).The high sensitivity of the method allowed the determination of the studied drug in spiked human plasma with average percentage recovery of 99.42 ± 3.84.  相似文献   

12.
Two simple, accurate and highly sensitive spectrofluorometric methods were developed for the determination of ethamsylate (ETM). Method I is based on measuring the native fluorescence of ethamsylate in water at 354 nm after excitation at 302 nm. The calibration plot was rectilinear over the range of 0.05–1 μg/mL for ETM with limits of detection and quantitation of 7.9 and 26 ng/mL, respectively. Method II involved synchronous and first derivative synchronous fluorometric methods for the simultaneous determination of ethamsylate (ETM) and hydroquinone (HQ) which is considered as an impurity and/or acidic degradation product. The synchronous fluorescence of both the drug and its impurity were measured in methanol at Δ λ of 40 nm. The peak amplitudes (1D) were estimated at 293.85 or 334.17 nm for ETM and at 309.05 nm for HQ. Good linearity was obtained for ETM over the ranges 0.1–1.4 μg/mL and 0.1–1.0 μg/mL at 293.85 and 334.17 nm, respectively. For HQ, the calibration plot was rectilinear over the range of 0.01–0.14 μg/mL at 309.05 nm. Limits of detection were 20, 2.01 ng/mL and limits of quantitation were 60, 6.7 ng/mL for ETM and HQ by method II, respectively. Both methods were successfully applied to commercial ampoules and tablets. The results were in good agreement with those obtained by the reference method. Method I was utilized to study the stability of ETM and its degradation kinetics using peroxide. The apparent first-order rate constant, half-life times and activation energy of the degradation process were calculated. Method I was further extended to the in-vitro and in-vivo determination of ETM in spiked and real plasma samples. The mean% recoveries were 99.57 ± 3.85 and 89.39 ± 5.93 for spiked and real human plasma, respectively.  相似文献   

13.
Two sensitive fluorometric methods were developed for the determination of both bopindolol malonate (BOP) and celiprolol HCl (CLP) based on measuring their native fluorescence in methanol and acetonitrile, respectively. For BOP, the fluorescence was measured at 316?nm after excitation at 278?nm. The proposed method was successfully applied to the assay of commercial tablets as well as content uniformity testing. For CLP, the fluorescence was enhanced by the addition of carboxymethylcellulose solution and measured at 455?nm after excitation at 339?nm. The method was successfully applied to the analysis of CLP in tablets and biological fluids. In both methods, interference likely to be introduced from co-formulated, co-administered, or chemically related drugs was studied. The results were statistically compared with those obtained by reference methods and were found to be in good agreement.  相似文献   

14.
Two simple, sensitive, rapid, economic and validated methods, namely reversed phase liquid chromatography (method Ι) and third derivative synchronous fluorescence spectroscopy (method ΙΙ) have been developed for the simultaneous determination of rabeprazole sodium and domperidone in their laboratory prepared mixture after derivatization with 4-Chloro-7-nitrobenzofurazan. Reversed phase chromatography was conducted using a Zorbax® SB-Phenyl column (250.0 mm × 4.6 mm id) combined with a guard column at ambient temperature with fluorimetric detection at 540 nm after excitation at 483 nm. A mobile phase composed of a mixture of distilled water with methanol and acetonitrile in a ratio of 50:20:30 adjusted pH to 4 has been used at a flow rate of 1 mL/min. Sharp well resolved peaks were obtained for domperidone and rabeprazole sodium with retention times of 5.5 and 6.4 min respectively. While in method ΙΙ, the third-derivative spectra were estimated at 507 and 436 nm for rabeprazole sodium and domperidone respectively. Linearity ranges for rabeprazole sodium and domperidone respectively in both methods were found to be 0.15–2.0 and 0.1–1.5 μg/mL. The proposed methods were successfully applied for the analysis of the two compounds in their binary mixtures, and laboratory prepared tablets. The obtained results were favorably compared with those obtained by the comparison method. Furthermore, detailed validation procedure was also conducted.  相似文献   

15.
A simple, sensitive and rapid spectrofluorimetric method for determination of itopride hydrochloride in raw material and tablets has been developed. The proposed method is based on the measurement of the native fluorescence of the drug in water at 363 nm after excitation at 255 nm. The relative fluorescence intensity-concentration plot was rectilinear over the range of 0.1–2 μg/mL (2.5?×?10?7–5.06?×?10?6 mole/L), with good correlation (r?=?0.9999), limit of detection of 0.015 μg/mL and a lower limit of quantification of 0.045 μg/mL. The described method was successfully applied for the determination of itopride hydrochloride in its commercial tablets with average percentage recovery of 100.11?±?0.32 without interference from common excipients. Additionally, the proposed method can be applied for determination of itopride in combined tablets with rabeprazole or pantoprazole without prior separation. The method was extended to stability study of itopride. The drug was exposed to acidic, alkaline, oxidative and photolytic degradation according to ICH guidelines. Moreover, the method was utilized to investigate the kinetics of the alkaline, acidic and oxidative degradation of the drug. A proposal for the degradation pathways was postulated.  相似文献   

16.
A simple, sensitive, and accurate spectrofluorimetric method was developed for the determination of citalopram in bulk and pharmaceutical preparations. The method is based on the enhancement of the weak fluorescence signal (FL) of the Tb (III)-citalopram system in the presence of silver nanoparticles. Fluorescence intensities were measured at 555 nm after excitation at 281 nm. Prepared silver nanoparticles (AgNPs) were characterized by UV-Visible spectra and transmission electron microscopy (TEM). Various factors affecting the formation of citalopram-Tb (III)-AgNPs complexes were studied and optimized. The fluorescence intensity versus concentration plot was linear over the range 0.02–14 μg?mL?1, with an excellent correlation coefficient of 0.9978. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 7.15?×?10?6?μg?mL?1 and 2.38?×?10?5?μg?mL?1 respectively. The proposed method was found to have good reproducibility with a relative standard deviation of 3.66 % (n?=?6). The interference effects of common excipients found in pharmaceutical preparations were studied. The developed method was validated statistically by performing recoveries studies and successfully applied for the assay of citalopram in bulk powder and pharmaceutical preparations. Percent recoveries were found to range from 98.98 % to 100.97 % for bulk powder and from 96.57 % to 101.77 % for pharmaceutical preparations.  相似文献   

17.
用同步荧光法消除了溴氰菊酯对牛血清白蛋白内源性荧光的干扰,研究了生理条件(pH=7.4)下溴氰菊酯与牛血清白蛋白之间的相互作用。不同温度下的猝灭常数证明溴氰菊酯对牛血清白蛋白的猝灭是静态过程,据此求得25℃下溴氰菊酯与牛血清白蛋白的结合常数为1.97×105L.mol-1,热力学参数ΔH=29.79kJ.mol-1、ΔS=201.32J.K-1.mol-1,两者之间的相互作用力以疏水作用力为主。根据Foerster非辐射能量转移机理,计算了牛血清白蛋白与溴氰菊酯间结合距离r=5.42nm,能量转移效率E=0.104。  相似文献   

18.
Protolytic equilibria often have profound effects on chemical activity, since protolytic species usually behave quite differently. It is therefore important to characterize the protolytic properties of important chemicals. Here we present a new approach to study protolytic equilibria of fluorescent species that is extremely accurate and relies on minimum assumptions. We show that by measuring 2-dimensional excitation/emission scans of samples at different pH. the 3-dimensional experimental data set, I(lambda(ex), lambda(em), C(pH)), can be unambiguously decomposed into the spectral responses of the protolytic species present as well as their concentration. The approach is demonstrated on the protolytic equilibrium of fluorescein. Although the fluorescein monoanion cannot be obtained in pure form, the spectra and concentrations of both fluorescein species, as well as the protolytic constant, are determined with excellent accuracy. The proposed method is general and can be applied not only for studies of protolytic equilibria, but on any chemical equilibria and chemical reactions involving fluorescent species.  相似文献   

19.
A simple, rapid and sensitive constant wavelength synchronous fluorescence method is developed for the determination of danofloxacin (DAN) in pharmaceutical formulations and its residue in milk based on Al(III) enhanced fluorescence. The synchronous fluorescence intensity of the system is measured at 435?nm using ? λ?=?80?nm and an excitation wavelength of 280?nm. A good linear relationship between enhanced fluorescence intensity and DAN concentration is obtained in the range of 3-100?ng?mL(-1)(r (2)?=?0.9991). The limit of detection (LOD, S/N?=?3) of the present method is 0.9?ng?mL(-1). The proposed method can be successfully applied to the determination of DAN in pharmaceutical formulations and in milk without serious interferences from common excipients, metal ions and other co-existing substances. The method can be used as a rapid screening to judge whether the DAN residues in milk exceed Maximum Residue Limits (MRLs) or not.  相似文献   

20.
建立了芴、咔唑、苯并[a]芘和苝四组分同时测定的导数恒能量同步荧光分析法,并对其优越性进行了比较说明.该法简便快速,无需对混合物进行分离,只需一次扫描,就可实现这四组分的同时鉴别和定量测定.将该方法应用于河水样、自来水样和大气飘尘样的分析,取得了良好的效果,回收率分别为90.0%~108.0%,90.0%~104.0%和90.0%~102.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号