首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 200 毫秒
1.
PTFE/Al含能复合物的本构关系   总被引:2,自引:0,他引:2  
室温下,利用万能材料试验机和分离式霍普金森压杆获得了PTFE/Al含能复合物在应变率10-3 ~103s-1范围内的压缩应力应变曲线。通过对不同应变率下力学性能的分析,初步建立了材料基于Johnson- Cook塑性模型的压缩本构方程,考虑了材料的应变硬化效应和应变率效应。利用该方程进行的PTFE/Al弹 丸侵彻钢靶板的数值模拟结果与实际情况较符合,验证了该方程的可靠性和合理性,对PTFE/Al材料的实 际应用也具有一定的指导作用。  相似文献   

2.
采用混合压制烧结法制备了4种不同TiH2含量的铝/氢化钛/聚四氟乙烯(Al/TiH2/PTFE)试件,并基于分离式霍普金森杆和落锤冲击实验,对反应材料的动态压缩力学性能、撞击感度及反应特性进行了研究。实验结果表明,4种材料均存在应变硬化和应变率硬化效应,随加载应变率的提高,材料屈服强度和硬化模量增大。相同加载应变率下,材料屈服强度随TiH2含量的增加而增高,材料压缩强度则先增高后降低,TiH2质量分数为5%时材料压缩强度达到最大值166.4 MPa,比Al/PTFE强度提高6.8%。在一定含量范围内(小于5%),加入TiH2有助于提高Al/PTFE材料撞击感度和能量释放水平,而TiH2质量分数大于10%时,材料撞击感度和反应剧烈程度则逐渐降低。与Al/PTFE相比,含TiH2试件反应火光周围有明显的火星喷溅现象,且此现象TiH2含量越高越显著。  相似文献   

3.
PTFE/Al含能复合材料的压缩行为研究   总被引:2,自引:0,他引:2  
金属/氟聚合物含能复合材料是一类新型的高级含能材料.研究了室温下Al含量和应变率对PTFE/Al含能复合材料压缩性能和反应性能的影响,所加载的应变率为6×10-3s-1~8×103s-1.材料压缩性能的应变率效应明显:与静态加载相比,动态加载下材料模量和强度明显提高,但应变降低.材料的损伤过程主要包括塑性变形、开裂和反应3部分.随着Al含量的增加,材料准静态和动态压缩强度均呈先升后降的趋势,在Al含量为35%时达到最高值102.6 MPa和154 MPa;引发反应所需加载的应变率增加,但对应的应力值差别不明显,基本在165 MPa左右,材料引发后反应完全性降低.  相似文献   

4.
The study on the compressive behavior of ptfe/al energetic composite   总被引:1,自引:0,他引:1  
金属/氟聚合物含能复合材料是一类新型的高级含能材料. 研究了室温下Al含量和应变 率对PTFE/Al含能复合材料压缩性能和反应性能的影响,所加载的应变率为6\times 10^{-3}s^{-1}\sim8\times 10^{3}s^{ -1}. 材料压缩性能的应变 率效应明显:与静态加载相比,动态加载下材料模量和强度明显提 高,但应变降低. 材料的损伤过程主要包括塑性变形、开裂和反应3部分. 随着Al含量的增 加,材料准静态和动态压缩强度均呈先升后降的趋势,在 Al含量为35\%时达到 最高值102.6 MPa和154 MPa; 引发反应所需加载的应变率增加,但对应的应力值 差别不明显,基本在165 MPa左右, 材料引发后反应完全性降低.  相似文献   

5.

利用分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)系统对空心微珠体积分数为0.4的空心微珠/1199Al复合泡沫在1 700~2 900s-1应变率范围内的动态压缩力学性能、吸能性能进行了研究,还利用SEM扫描电镜对压缩试件断口进行微观组织分析,与准静态条件下材料的压缩力学性能及压缩变形机制进行了对比。结果表明,空心微珠/1199Al复合泡沫是一种应变率敏感材料,与准静态结果相比,在高应变率下复合材料的流动应力和塑性应变有明显的增大,应变率硬化效应对复合材料的流动应力的影响明显大于应变硬化的影响。复合材料的准静态和动态压缩变形机制存在一定差异,动态载荷作用下,空心微珠/1199Al复合泡沫内部空心微珠的压缩和基体材料的充填同时发生,组分之间具有良好的协调变形能力。

  相似文献   

6.
基于16 mm口径气炮撞击实验,对铝颗粒增强的聚四氟乙烯(polytetrafluoroethylene)/Al(PTFE/Al)冲击反应复合材料的冲击反应阈值开展了研究。为研究不同撞击加载条件下应变率和碰撞应力对PTFE/Al冲击诱发反应的影响,实验中采用铝、钢和低密度聚乙烯(low density polyethylene, LDPE)这3种不同材料的靶板及不同长度的试样,进行不同加载条件下的测试分析。实验结果显示,PTFE/Al材料的冲击诱发同时受到碰撞压力和加载应变率的影响。同时,通过对试样撞靶过程进行数值模拟,并与实验和理论结果进行对比。基于实验数据,拟合出PTFE/Al材料冲击反应的的预测曲线。  相似文献   

7.

聚四氟乙烯(PTFE)在高速碰撞或者爆炸加载时的应变率可高达106 s-1,高应变率下PTFE材料的力学响应会对其材料性能产生较大影响。本文中采用压剪炮试验系统(PSPI)测试了PTFE材料在高应变率(105~106 s-1)下的压缩力学性能,实验中碳化钨(WC)飞片板以一定速度撞击由前靶板、试件和后靶板组成的三明治结构,并采用激光干涉仪记录后靶板自由面的速度变化。对实验结果处理后得到该PTFE材料的应力应变数值,并拟合得到应力应变曲线。本研究对PTFE/金属复合材料制成的动能侵彻体强度及其冲击碎化机理的分析具有指导意义。

  相似文献   

8.
准确测量混凝土动态压缩性能及其应变率强化效应一直是冲击动力学研究领域的重点和难点之一。针对混凝土大口径SHPB实验,分析探讨了其中几个主要问题:应力均匀性问题、恒应变率问题和端面接触问题。研究表明:对于此次试验中混凝土试件而言,应力均匀性假设限制试验最大应变率小于166 s-1;杆和试件端面接触不平和接触不良使得测算出的杨氏模量和屈服强度明显小于实际值;在此基础上,给出了五步测试法和预应力法;利用复合整形技术实现了近似恒应变率加载。利用以上所发展和改进的技术得到了C110混凝土动静态应力应变曲线,结果显示,在试验范围内混凝土杨氏模量并没有应变率效应,其单轴压缩屈服强度与应变率对数呈线性正比关系,其唯象应变率强化因子为0.10。理论分析表明,大口径SHPB试验所得混凝土应变率效应是一种唯象效应,对于混凝土类压力敏感屈服材料而言,应该根据其屈服面方程对其进行校正,从而得到其本构方程中材料的应变率强化因子,分别利用Tresca屈服准则和K&C本构中屈服面方程对其进行校正,得到C110材料的真实应变率强化因子分别为0.015和0.038。  相似文献   

9.

采用分离式霍普金森压杆(SHPB)加载方法和高速摄影技术,对混合压制烧结法制备的铝颗粒增强聚四氟乙烯复合材料(polytetrafluoroethylene/Al,PTFE/Al)的冲击反应临界条件进行研究。实验中采用钢杆、铝杆和不同尺寸的试样,进行不同加载条件下的测试,实验结果表明:PTFE/Al复合材料的冲击反应过程主要可分为变形、碎裂、反应阶段,其冲击反应临界同时关联于应力和应变率。并基于实验获得了PTFE/Al复合材料的冲击反应临界渐进线应力和应变率,通过对实验数据的归纳和分析,初步提出实验条件下关联应力和应变率的PTFE/Al临界反应关系式,获得冲击反应阈值预测曲线。

  相似文献   

10.
钢纤维高强混凝土冲击压缩的试验研究   总被引:12,自引:3,他引:9  
介绍了利用100 mm SHPB装置获得钢纤维高强混凝土冲击压缩应力-应变曲线的试验研究。同一类试样在静态和动态共4个不同应变率下的试验结果揭示混凝土是应变率敏感材料,其破坏应变、峰值应变和弹性模量表现出显著的应变率强化效应。从静态和动态压缩下混凝土损伤演化的不同形式对这种应变率强化效应进行了详细讨论。从相近应变率下不同钢纤维含量试样的试验结果中,发现冲击压缩下钢纤维对混凝土的增强效应随应变率的增大而减弱。从钢纤维对混凝土静态和动态压缩下损伤演化形式的影响,讨论了钢纤维对混凝土的这种增强效应。  相似文献   

11.
利用带有波形整形器的Split Hopkinson Pressure Bar(SHPB)技术测试了碳布叠层/碳复合材料在应变率为500、1 500 s-1时的动态压缩性能。研究结果表明:利用轧制紫铜作为整形器材料不仅可以有效地实现对碳布叠层/碳复合材料的常应变率压缩加载,而且有助于改善试样两端的应力平衡,从而保证测试数据的可靠性;此外,与准静态压缩相比较,在动态压缩载荷下,碳布叠层/碳复合材料的压缩强度有较强的应变率效应,且复合材料压缩强度的动态增加函数可以用Cowper-Symonds幂函数的形式来表示。  相似文献   

12.
利用高温电子万能试验机和具有高温同步自组装功能的Hopkinson压杆对二维C/SiC复合材料进行了应变率为10-4~103s-1,温度为293~1273K下的单轴压缩力学性能测试。实验结果表明:二维C/SiC复合材料破坏时并未表现出典型的脆性破坏,而是在应力达到压缩强度时出现了显著的应变软化,在经历了较大的变形后才最终破坏,同时材料还表现出良好的高温承载能力及一定的温度和应变率依赖性。随着温度的升高,复合材料的压缩强度呈降低的趋势。与准静态下室温压缩时相比,材料在1273K 时的压缩强度的降低程度不超过30%,但压缩强度对应变率的敏感性随着温度的升高而增大。由于高温下试样氧化,C/SiC复合材料压缩强度对应变率的敏感性在温度为1073K时显著增大。  相似文献   

13.
王振  张超  王银茂  王祥  索涛 《爆炸与冲击》2018,38(2):295-301
利用电子万能试验机和改进的分离式Hopkinson压杆测试了飞机风挡无机玻璃在2种准静态应变率(4×10-4、4×10-3 s-1)和2种动态应变率(200、400 s-1)下的单轴压缩力学行为,并利用高速摄像机记录试样破坏过程。实验结果表明:玻璃破坏时表现为典型的脆性材料,随着应变率的提高,材料的压缩强度显著提高。通过观察试样变形过程及变形后的形貌可知,玻璃在压缩载荷下的破坏模式为横向张应力引起的裂纹成核、沿轴向扩展与联结交错导致的失效破坏,并从微裂纹成核扩展和能量耗散的角度对材料的应变率效应做出了合理的解释。  相似文献   

14.
冰在低温下的单轴压缩力学行为和破坏机制   总被引:1,自引:0,他引:1  
利用带有低温装置的Instron5848材料实验机和分离式Hopkinson压杆装置(SHPB),在-10℃、-20℃和-30℃温度下,对多晶冰进行了应变率为10-4~102 s-1范围内的单轴压缩力学性能实验,分析了实验结果的可靠性和有效性.研究发现:冰的压缩强度具有明显的温度和应变率敏感性,随应变率的增大、温度的降低而提高;压缩强度与应变率对数呈线性关系,应变率的升高会增强降温对压缩强度的强化效应.在研究的应变率和温度范围内,冰主要有径向膨胀、纵向劈裂和整体破碎三种破坏模式,内应力释放速率和氢键强度的变化是导致多晶冰破坏模式改变的主要原因.  相似文献   

15.

采用基于霍普金森压杆的新型加载技术对Ti-6Al-4V材料的动态剪切特性及失效机理进行了测试研究。获得了Ti-6Al-4V材料在超过104 s-1应变率下的剪应力-剪应变曲线及失效参数。研究发现,材料的流动应力存在明显的应变率强化效应;随着应变率的增加,材料的失效应力逐渐增大,而失效应变逐渐减小。采用ABAQUS/Explicit对加载过程进行了数值模拟。结果显示,剪切区材料基本处于平面剪切状态,应力应变场分布较为均匀,计算得到的剪应力-剪应变曲线与实验结果吻合较好。经断口分析可知,随着应变率的升高,Ti-6Al-4V的失效机理存在由韧窝、拉伸韧窝至台阶及河流花样的演化过程,材料的失效模式主要表现为韧性断裂。

  相似文献   

16.
采用Instron 9350落锤试验机研究了中低应变率下软质聚氨酯泡沫的动态压缩力学性能,分析了其应力-应变响应特征和应变率敏感性,讨论了应变率对材料应变率敏感性指数和能量吸收特性的影响,并基于实验结果建立了可准确描述其压缩力学响应的率相关本构模型。结果表明,软质聚氨酯泡沫的静动态压缩应力-应变响应具有典型的三阶段特征,且呈现出明显的应变率强化效应。准静态加载下,材料具有较高的吸能效率但能量吸收值较小,应变率对最大吸能效率和比吸能的影响较小;动态加载下,随着应变率的增加,最大吸能效率显著减小而比吸能明显增大。考虑应变率影响的修正Sherwood-Frost模型和修正Avalle模型都能够很好地表征软质聚氨酯泡沫的静动态压缩应力-应变响应,但修正Avalle模型的参数较少,更便于工程应用。研究结果可为软质聚氨酯泡沫抗冲击结构的设计和优化提供指导。  相似文献   

17.
闫东明  林皋 《爆炸与冲击》2007,27(2):121-125
利用大连理工大学自行研制、改造的大型液压伺服混凝土静动三轴试验系统对立方体试件进行一向恒定侧压的动态压缩试验。完成了四个侧向恒定压力等级的试验,应变速率变化范围为10-5~10-2 s-1。探讨了不同应变速率以及不同恒定侧压条件下混凝土强度与变形的变化规律。以试验数据为基础,在八面体应力空间中建立了适用于单向恒定侧压条件下混凝土双轴动态破坏的强度公式,为大坝、海上采油平台等大型混凝土结构的抗震安全分析提供了参考。  相似文献   

18.
HTPB复合底排药压缩屈服应力模型研究   总被引:2,自引:0,他引:2  
目前广泛应用于底排增程技术的 HTPB 复合底排药 (composite base bleed grain,CBBG) 是一种颗粒填充含能材料,战场环境中将承受冲击、温度等载荷作用. 为研究 HTPB CBBG 冲击压缩力学性能,进行了不同温度 (233$\sim$323 K) 和应变率 (1100$\sim$7900 s$^{-1}$) 下的分离式霍普金森压杆实验. 实验结果表明,各工况下,应力应变曲线均呈现屈服-$\!$-应变硬化特征,HTPB CBBG 保持高韧性. 提高应变率和降低温度均导致相同应变下的应力幅值上升,但温度较应变率对HTPB CBBG 冲击压缩力学性能的影响更为显著. 基于所研究温度范围高于 HTPB CBBG 玻璃化转变温度,通过将水平、垂直移位因子与温度的关系表示为 WLF 方程的形式,将时温等效原理引入协同模型,并计及内应力的应变率增强效应,提出了一种新的屈服应力模型.选取参考温度,利用水平、垂直移位因子-$\!$-温度曲线和屈服应力主曲线拟合模型参数.模型预测值与实验数据对比结果表明:该模型可准确表征 233$\sim$323 K 时 HTPB CBBG 屈服应力的双线性应变率相关性,明确了较低和较高应变率时,应变率效应分别主要由内应力和驱动力贡献.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号