首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Inhaltsübersicht. Im System Na/La/NH3 warden Amidpräparate durch Umsetzung der Metalle Na und La mit Ammoniak bei 3000–5000 atm NH3-Druck und bei Temperaturen von 250–500°C dargestellt. Das Molverhältnis der Ausgangsmetalle reichte von Na: La = 9:1 bis 1:2. Na3La(NH2)6 ließ sich mit einer röntgenographischen Einkristalluntersuchung charakterisieren: A = 22,11 ± 0,01 Å, b = 11,15 ± 0,01 Å und c = 7,375 ± 0,006 Å; N = 8, Fddd (Nr. 70). Neben dieser Verbindung und dem binären Amid des Lanthans existiert wahrscheinlich bei tiefen Reaktions-temperaturen ein schlecht kristallisierendes Na-ärmeres Amidometallat. Die thermische Zersetzung von Amidpraparaten (Na: La = 3:1 und 1:1) führte zu zwei mikro-kristallinen ternaren Phasen, einem Amid — Imid sowie zu einem Imid — Nitrid; als Endprodukte ergaben sich LaN neben unzersetztem NaNH2. Investigation of the System Na/La/NH3 Abstract. In the system Na/La/NH3 amides were prepared by the reaction of the metals Na and La with ammonia. The ammonothermal synthesis was used starting with a molar ratio of the metals ranging from Na: La = 9:1 to 1:2 at NH3-pressures from 3000 to 5000 atm and temperatures from 250 to 500°C. Na3La(NH2)6 was characterized by an x-ray single crystal inv estigation: A = 22.11 ± 0.01 Å, b = 11.15 ± 0.01 Å, and c = 7.375 ± 0.006 Å; N = 8, Fddd (No. 70). Beside this compound and the binary Lanthanum amide another bad crystallizing compound with a lower sodium content may exist. The thermal degradation of the amides (Na: La = 3:1, and 1:1) led to two microcrystalline ternary phases, an amide – imide and an imide – nitride; binary LaN and undecomposed NaNH2 are the endproducts.  相似文献   

2.
Redetermination of Structure and Properties of the Isotypic Sodium Tetraamido Metallates of Aluminium and Gallium Crystals for x-ray structure determination of NaAl(NH2)4 and NaGa(NH2)4 were obtained by the reaction of the metals with ammonia in autoclaves at 100°C and P(NH3) = 60 bar within 7 days. The compounds crystallize isotypic in the space group P21/c with Z = 4 NaAl(NH2)4 a = 7.328(2) Å, b = 6.047(2) Å, c = 13.151(3) Å, β = 94.04(1)° NaGa(NH2)4 a = 7.4087(8) Å, b = 6.0917(5) Å, c = 12.855(2) Å, β = 92.10(1)° The structures were refined inclusively all H-positions of the amide ions. The ternay amides are furthermore characterized by their IR spectra and their thermal behaviour.  相似文献   

3.
Rubidium Decaamidodichromate(III), Rb4Cr2(NH2)10 – Synthesis and Crystal Structure The reaction of chromium(III) with rubidium amide in a molar ratio of Cr(NH2)3/RbNH2 = 1 : 1.75 at 140 °C and p(NH3) = 3 kbar in a high-pressure autoclave results after 90 days in dark violet crystals of Rb4Cr2(NH2)10. Structure determination was done by single crystal X-ray methods:Pna21 (No. 33), Z = 4, a = 12.244(3) Å, b = 6.727(1) Å, c = 19.775(5) Å, N(F2o > 3σ(F2o)) = 1046, N(Var.) = 94, R/Rw = 0,051/0,059&#TAB;The structure of Rb4Cr2(NH2)10 contains isolated, face-sharing N-octahedra around two Cr3+-ions giving [Cr(NH2)3(NH2)3/2]23–. These are arranged to oneanother following the motif of a hexagonal closest packing. They are connected via Rb+- and one further amide ion not bound to Cr3+. The compound is characterized by thermoanalytical and IR-/Raman-spectroscopic measurements.  相似文献   

4.
Colourless crystals grow in the colder part of a glass ampoule when AlX3·5NH3 with X = Cl, Br, I is heated for 3—6 d to 330 °C (Cl), 350 °C (Br) and 400 °C (I), respectively. The chloride forms hexagonal prisms while the bromide and iodide were obtained as a bunch of lancet‐like crystals. The chloride and bromide crystallize isotypic whereas the iodide has an own structure type. All three are related to the motif of the K2PtCl6 type. So the formula of the ammoniates may be written as X2[Al(NH3)5X] ≙ [Al(NH3)5X]X2. The compounds are characterized by the following crystallographic data AlCl3·5NH3: Pnma, Z = 4, a = 13.405 (1)Å, b = 10.458 (1)Å, c = 6.740 (2)Å AlBr3·5NH3: Pnma, Z = 4, a = 13.808 (2)Å, b = 10.827 (1)Å, c = 6.938 (1)Å AlI3·5NH3: Cmcm, Z = 4, a = 9.106 (2)Å, b = 11.370 (2)Å, c = 11.470 (2)Å For the chloride and the bromide the structure determinations were successful including hydrogen positions. All three compounds contain octahedral molecular cations [Al(NH3)5X]2+ located in distorted cubes formed by the remaining 2X ions. The orientation of the octahedra to each other is clearly different for those with X = Cl, Br in comparison to the one with X = I.  相似文献   

5.
Potassium Amido Trioxo Germanates(IV) – Hydrogen Bridge Bonds in K3GeO3NH2 and K3GeO3NH2 · KNH2 Colorless crystals of K3GeO3NH2 and of K3GeO3NH2 · KNH2 were obtained by the reaction of KNH2 with GeO2 in supercritical ammonia at 450°C and p = 6 kbar in high-pressure autoclaves within 15 resp. 5 days. The crystal structures of both compounds were solved by X-ray single crystal methods. K3GeO3NH2: P1 , a = 6.390(1) Å, b = 6.684(1) Å, c = 7.206(1) Å, α = 96.47(1)°, β = 101.66(1)°, γ = 91.66(1)°, Z = 2, R/Rw = 0.020/0.022, N(I) ≥ 2σ(I) = 3023, N(Var.) = 82 K3GeO3NH2 · KNH2: P21/c, a = 10.982(6) Å, b = 6.429(1) Å, c = 12.256(8) Å, β = 106.12(1)°, Z = 4, R/Rw = 0.022/0.029, N(F) ≥ 3σ(F) = 1745, N(Var.) = 107. In K3GeO3NH2 tetrahedral ions GeO3NH23? are connected to chains by N? H …? O bridge bonds with 2.18 Å ≤ d(H …? O) ≤ 2.40 Å for d(N? H) ? 1.0 Å and by potassium ions while in K3GeO3NH2 · KNH2 bridge bonds between NH2 groups of GeO3NH23? and NH2? ions as acceptors occur with 2.41 Å ≤ d((N? )H …? NH2?) ≤ 2.61 Å for d(N? H) ? 1.0 Å.  相似文献   

6.
Crystal Structure of Hexamine Cyclotriphosphazene, P3N3(NH2)6 In the presence of KNH2 hexamine cyclotriphosphazene semi ammoniate (molar ratio 12:1) in NH3 gives crystals of solvent free P3N3(NH2)6 within 5 d at 130°C and p(NH3) = 110 bar. The structure was solved by X-rax methods: P3N3(NH2)6: P21/c, Z = 4, a = 10.889(6) Å, b = 5.9531(6) Å, c = 13.744(8) Å, β = 97.83(3)°, Z(Fo) = 1 721 with (Fo)2 ≥ 3σ(Fo)2, Z(var.) = 157, R/Rw = 0,036/0,041 The structure contains columns of molecules P3N3(NH2)6 all in the same orientation. The six-membered rings within one molecule have boat conformation. The columns are stacked together in a way that one is surrounded by four others shifted by half a lattice constant in direction [010]. Strong hydrogen bridge-bonds N? H…?N connect molecules within the columns and between them.  相似文献   

7.
The reaction of VI2 or TiI3, respectively, with ammonia in the presence of traces of water or oxygen, respectively, leads to [(NH3)5M? O? M(NH3)5]I4 · NH3 with M = V, Ti. Their structures were solved by X-ray single crystal data: Pbca (No. 61), Z = 4, M = V: a = 12.482(4) Å, b = 14.819(6) Å, c = 13.286(5) Å, N(F ? 3σF) = 983, N(variables) = 88, R/Rw = 0.053/0.063, M = Ti: a = 12.628(4) Å, b = 14.970(4) Å, c = 13.359(3) Å, N(F ? 3σF) = 1188, N(variables) = 88, R/Rw = 0.043/0.047. The structures consist of corner sharing octahedra double units [(NH3)5M? O? M(NH3)5]4+ with eclipsed conformation which are stacked together according to the motif of a distorted cubic face centered arrangement for the bridging oxygen atoms. IR spectroscopic investigations of the undeuterated vanadium compound and of 5% deuterated samples hint to N? H … I hydrogen bridge bonds and to remarkable π-bonding between the transition metal and the bridging oxygen atoms.  相似文献   

8.
Hydrogen Bonds in o- and m-Phenylenediammonium Aquapentafluoro Metallates(III) (MIII = Al, Cr, Fe) m- and o-Phenylenediammonium-[MIIIF5(H2O)] compounds of Al, Cr and Fe were synthesized and characterized by X-ray single crystal structure analysis. All structures are described in the space group P212121 (Z = 4). m-Ph(NH3)22+ (Ph(NH3)22+ = phenylenediammonium) compounds: Al : a = 6.489(2), b = 7.943(2), c = 18.204(2) Å, R/wR = 0.084/0.050 for 1 533 reflections; Cr : a = 6.571(2), b = 8.006(2), c = 18.456(3) Å, R/wR = 0.050/0.040 for 1 571 reflections; Fe : a = 6.608(2), b = 8.052(2), c = 18.424(4) Å, R/wR = 0.042/0.034 for 1 947 reflections. o-Ph(NH3)22+ compounds: Al : a = 6.580(2), b = 7.891(2), c = 18.319(5) Å, R/wR = 0.050/0.045 for 2 370 reflections; Cr : a = 6.642(2), b = 7.954(2), c = 18.484(4) Å, R/wR = 0.065/0.043 for 2 041 reflections; Fe : a = 6.693(2), b = 7.995(4), c = 18.529(7) Å, R/wR = 0.035/0.033 for 2 651 reflections. Isolated distorted octahedral [MIIIF5(H2O)]2? anions are connected by double O? H ?F hydrogen bonds of alternating strength to form chains in the b direction. Those chains, packed in a pseudohexagonal way, are further linked by the ammonium functions of the phenylenediammonium cations to a 3 D hydrogen bond network.  相似文献   

9.
Na4Br(NH2)3: An Amide Bromide in the System NaNH2/NaBr The pseudobinary system NaNH2/NaBr was investigated by X-ray methods. The crystal structure of Na4Br(NH2)3 was solved by single crystal data: Pnnm, Z = 4, a = 6.579(2) Å, b = 12.755(4) Å, c = 8.776(2) Å Z(Fo) with (Fo)2 ≥ 3σ = (Fo)2 = 503, Z(parameter) = 39, R/Rw = 0.082/0.106. It is a new type of structure, built up by a three-dimensional network of [Na4(NH2)3+] containing the bromide ions.  相似文献   

10.
Rubidium Hexaamidolanthanate and -neodymate, Rb3[La(NH2)6] and Rb3[Nd(NH2)6]; Compounds. Structurally Related to K3[Cr(OH)6] and K4CdCl6 Colourless Rb3[La(NH2)6] (a = 12.298(4) Å, c = 13.759(2) Å, N = 6, R3 c) and pale blue Rb3[Nd(NH2)6] (a = 12.199(6) Å, c = 13.626(4) Å, N = 6, R32) have been prepared by the reaction of the corresponding metals (Rb: La resp. Nd = 3:1) with NH3(P(NH3) = 4–4.5 kbar) at 300°C. Single crystal x-ray methods gave their structures. It is shown by space group relations that these compounds are structurally related to one another and to further ternary amides as well as to K3[Cr(OH)6] and K4CdCl6.  相似文献   

11.
Hydrogen Bonds in the Monoammoniates of Potassium and Cesium Amide X‐ray structure determination was carried out on the monoammoniates of potassium and cesium amide. Crystals of KNH2 · NH3 were grown from liquid NH3 at 50 °C > T > 20 °C. They crystallize in the cold part of a pressure resistant glass apparatus. Single crystals of CsNH2 · NH3 were obtained by zone‐melting at —30 °C in x‐ray capillaries. The following data characterize the crystal chemistry of the compounds: KNH2 · NH3 Cmc21, Z = 4 21 °C a = 3, 938(1) Å, b = 10, 983(3) Å, c = 5, 847(1) Å CsNH2 · NH3 Pnma, Z = 4 30 °C a = 7, 103(1) Å, b = 5, 390(1) Å, c = 10, 106(2) Å For CsNH2 · NH3 all hydrogen atom positions were successfully refined. The structure of both ammoniates may be described by a distorted hexagonal close packed arrangement of cations with the NH3 molecules in the octahedral and the NH2 anions in the trigonal bipyramidal interstices. The three H atoms of the NH3 molecules are involved in hydrogen bridge bonds to two amide ions with d(N(NH3)···N(NH2)) = 2.60Å for the K and 3.19Å for the Cs compound and to a further NH3 molecule with d(N(NH3)···N(NH3)) = 2.98Å for the K and 3.56Å for the Cs compound. Structural relationship of the ammoniates to the monohydrates of KOH and RbOH is discussed.  相似文献   

12.
Single crystals of AlBr3 · NH3 and AlI3 · NH3 sufficient in size for X‐ray structure determinations were obtained by evaporation/ sublimation of the respective compound from its melt. The ammoniates were synthesized by the reaction of the pure halide with NH3 at ‐78°C and following homogenization by slowly heating the reaction mixture up to the melting points of the ammoniates (124°C and 126°C, respectively). The X‐ray structure determinations for both monoammoniates were successfully carried out for the heavy atom positions (no hydrogen atoms): AlBr3 · NH3: Pbca, Z = 16, a = 11.529 (5) Å, b = 12.188 (2) Å, c = 19.701 (4) Å AlI3 · NH3: Pbca, Z = 8, a = 13.536 (5) Å, b = 8.759 (2) Å, c = 14.348 (4) Å The structures contain tetrahedral molecules Al(NH3)X3 with X = Br, I. They are not isotypic. The main difference is given for the coordination of NH3 by X from neighbouring molecules. In Al(NH3)Br3 one of the two crystallographically independent NH3 ligands has 6Br and the other 7Br as neighbours whereas in Al(NH)3I3 only 5I surround the one kind of NH3.  相似文献   

13.
Synthesis and Structure of an Ammonium Diamidodioxophosphate(V), NH4PO2(NH2)2 The ammonolysis of P3N5 under ammonothermal conditions (T = 400°C, p(NH3) = 6 kbar, 14 d in autoclaves) in the presence of small definite amounts of water leads to the formation of NH4PO2(NH2)2. The structure was solved by single crystal X-ray methods. NH4PO2(NH2)2: P21/c (Nr. 14), a = 6.886(1) Å, b = 8.366(2) Å, c = 9.151(2) Å, β = 111.78(3)°, Z = 4, R1/wR2 = 0.026/0.072, Z(F > 2σ(F)) = 1183, N(variables) = 87. In NH4PO2(NH2)2 the anions [PO2(NH2)2]? are linked to chains by N? H …? N and N? H …? O bridge bonds. The ammonium ions are located between these chains and are donors for N? H …? O bridge bonds which connect the chains three-dimensionally.  相似文献   

14.
Li2Br(NH2): The First Ternary Alkali Metal Amide Halide The pseudobinary system LiNH2/LiBr was investigated by X-ray methods. The crystal structure of the compound Li2Br(NH2) was solved by single crystal data: Li2Br(NH2): Pnma, Z = 8, a = 12.484(2) Å, b = 7.959(1) Å, c = 6.385(1) Å, Z(Fo) with (Fo)2 ≧ 3σ(Fo)2 = 348, Z (parameter) = 51, R/Rw = 0.019/0.021 Li2Br(NH2) crystallizes in a new type of structure. To one another isolated chains of [Li2Li4/2(NH2)22+] show the motif of closest rod packing. They are connected via bromide ions in a distorted cubic primitive arrangement.  相似文献   

15.
Ni(NH3)Cl2 and Ni(NH3)Br2 were prepared by the reaction of Ni(NH3)2X2 with NiX2 at 350 °C in a steel autoclave. The crystal structures were determined by X‐ray powder diffraction using synchrotron radiation and refined by Rietveld methods. Ni(NH3)Cl2 and Ni(NH3)Br2 are isotypic and crystallize in the space group I2/m with Z = 8 and for Ni(NH3)Cl2: a = 14.8976(3) Å, b = 3.56251(6) Å, c = 13.9229(3) Å, β = 106.301(1)°; Ni(NH3)Br2a = 15.5764(1) Å, b = 3.74346(3) Å, c = 14.4224(1) Å, β = 105.894(1)°. The crystal structures are built up by two crystallographically distinct but chemically mostly equivalent polymeric octahedra double chains [NiX3/3X2/2(NH3)] (X = Cl, Br) running along the short b‐axis. The octahedra NiX5NH3 share common edges therein. The crystal structures of the ammines Ni(NH3)mX2 with m = 1, 2, 6 can be derived from that of the halides NiX2 (X = Cl, Br) by successive fragmentation of its CdCl2 like layers by NH3.  相似文献   

16.
The molecular structures of mono-substituted chlorocyclohexene are determined by gas-phase electron diffraction. The structural parameters are obtained by applying leastsquares analysis to the molecular scattering intensities. The bond distances (rg) and bond angles are: (1) 1-Cl-cyclohexene: C1C2 = 1.336 ± 0.006 Å. C2-C3 = 1.500 ± 0.009 Å, C3-C4 = 1.533 ± 0.010 Å, C4-C5 = 1.537 Å, C5-C6 = 1.527 ± 0.010 Å, C1-C6 = 1.504 ± 0.009 Å. C-Cl = 1.747 ± 0.005 Å, C-Hav = 1.138 ± 0.010 Å, ∠Cl-cc = 126.3 ± 0.5°, ∠C6C1C2 = 123.9 ± 0.8°. ∠C1C2C3= 124.6 ± 0.8°, ∠C4C3C2 = 111.8 ± 1.2° and ∠-C5C6C1 = 111.3 ± 1.1°; (2) 3-Cl-cyclohexene: C1=C2 = 1.336 Å, C2-C3 = 1.501 ± 0.010 Å, C3-C4 = 1.513 ± 0.008 Å, C4-C5 = 1.542 Å, C5-C6, = 1.516 ± 0.007 Å, C1-C6 = 1.505 ± 0.006 Å, C-C1 = 1.801 ± 0.005 Å, C-Hav = 1.120 ± 0.008 Å, ∠C6C1C2 = 123.2 ± 1.0°, ∠C1C2C3 = 124.1 ± 1.7°, ∠C5C6C1 = 113.0 ± 1.3°, ∠C2C3C4 = 112.5 ± 1.5° ∠ClC3C2 = 110.3 ± 0.8°, ∠H-C=C = 123.0 ± 3.0° and ǒH-C-C = 109.5 ± 2.0°, with a mixture of 55% axial and 45% equatorial conformers; (3) 4-Cl-cyclohexene: C1=C2 = 1.336 Å, C2-C3 = 1.507 ± 0.007 Å, C3-C4 = 1.516 ± 0.008 Å, C4-C5 = 1.544 Å, C5-C6 = 1.523 ± 0.010 Å, C1- C6 = 1-507 Å, C-Cl = 1.799 ± 0.005 Å, C-Hav = 1.116 ± 0.005 Å, ∠C6C1C2 = 123.3 ± 1.5°, ∠C5C6C1 = 113.0 ± 1.0°, ∠C2C3C4 = 112.3 ± 1.0°, ∠ClC4C3 = 110.2 ± 2.0°, ∠H-CC = 117.1 ± 4.5° and ∠H-C-C = 109.5 ± 1.0°, with a mixture of 45% axial and 55% equatorial conformers.  相似文献   

17.
Synthesis and Crystal Structure of Manganese(II) and Zinc Amides, Mn(NH2)2 and Zn(NH2)2 Metal powders of manganese resp. zinc react with supercritical ammonia in autoclaves in the presence of a mineralizer Na2Mn(NH2)4 resp. Na2Zn(NH2)4_.0.5NH3 to well crystallized ruby‐red Mn(NH2)2 (p(NH3) = 100 bar, T = 130°C, 10 d) resp. colourless Zn(NH2)2 (p(NH3) = 3.8 kbar, T = 250°C, 60 d). The structures including all H‐positions were solved by x‐ray single crystal data: Mn(NH2)2: I41/acd, Z = 32, a = 10.185(6) Å, c = 20.349(7) Å, N(Fo) with F > 3σ (F) = 313, N(parameter) = 45, R/Rw = 0.038/0.043. Zn(NH2)2: I41/acd, Z = 32, a = 9.973(3) Å, c = 19.644(5) Å, N(Fo) with F > 3σ (F) = 489, N(parameter) = 45, R/Rw = 0.038/0.043. Both compounds crystallize isotypic with Mg(NH2)2 [1] resp. Be(NH2)2 [2]. Nitrogen of the amide ions is distorted cubic close packed. One quarter of tetrahedral voids is occupied by Mn2+‐ resp. Zn2+‐ions in such an ordered way that units M4(NH2)6(NH2)4/2 occur. The H‐atoms of the anions have such an orientation that the distance to neighboured cations is optimum.  相似文献   

18.
[Cu(NH3)2](NO3)2 ( I ) and [Cu(NH3](NO3)2 ( II ) were synthesized by interaction of molten NH4NO3 with [Cu(NH3)4](NO3)2 and Cu(NO3)2 · 3 H2O, respectively, at 180 to 195°C for 24 hr. According to X-Ray single crystal analysis, I is orthorhombic (sp. gr. Pbca) with a = 5.678(1), b = 9.765(2), c = 11.596(2) Å, Z = 4, R = 0.060; II is monoclinic (sp. gr. P21/c) with a = 6.670(1), b = 8.658(2), c = 9.661(2) Å, β = 101.78(2)°, Z = 4, R = 0.027. In both structures, the nearest coordination environment of Cu is a slightly distorted square formed by N (from NH3) and O atoms (from NO3 groups). The structure of I consists of centrosymmetrical [Cu(NH3)2](NO3)2 molecules linked by hydrogen bonds. The Cu? N and Cu? O distances are 1.98 and 2.01 Å, respectively. In II , the Cu? N distance is 1.95 Å, the Cu? O distances are 1.96, 2.02, and 2.03 Å. The [CuO3NH3] squares are connected by NO3 bridges into zigzag chains, which are linked into layers by longer Cu? O interactions (2.31 Å). Obviously, the layers are additionally strengthened and held together by hydrogen bonds.  相似文献   

19.
The reaction of ammonium heptamolybdate with hydrazine sulfate in an aqueous solution of glycine at room temperature yielded colorless crystals of (NH4)4[(NH3CH2CO)2(Mo8O28)] · 2 H2O. The crystal is monoclinic, space group C2/c (no. 15), a = 17.234 Å, b = 10.6892 Å, c = 18.598 Å, β = 108.280°, V = 3253.2 Å3, Z = 4. The crystal structure contains ammonium cations and isolated octamolybdate(4–) anions, [(NH3CH2CO)2(Mo8O28)]4–, with two zwitterionic glycine molecules as ligands.  相似文献   

20.
The molecular structure of methane sulphonyl fluoride in the vapour state was studied by electron diffraction. Assuming a value of 2.480A?for the distance between the oxygen atoms from a microwave determination, the following geometrical parameters (ra structure) have been obtained: r(C-H) = 1.093±0.010Å, r(S-O) = 1.410±0.003Å, r(S-F) = 1.561 ±0.004Å, r(S-C) = 1.759±0.006Å, ∠F-S-C = 98.2±1.5°, ∠-S-F = 106.2±0.4°, ∠-O-S-O = 123.1 ±1.5° and ∠H-C-H = 112.9±1.9°. All the observed variations in the molecular geometries of (CH3)2SO2, CH3SO2Cl, CH3SO2F and SO2F2 may be accounted for by the valence shell electron pair repulsion theory. It is particularly advantageous to combine electron diffraction and microwave data in studying sulphone molecular geometries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号