首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristics of energy transfer distributed feedback dye laser (ETDFDL) are studied both theoretically and experimentally in a mixture of Rhodamine B and Acid blue 7 dyes pumped by 532 nm Nd:YAG laser. The behaviour of donor and acceptor DFDL, the dependence of their pulse width and output power on pump power and donor-acceptor concentrations are studied. Experimentally, the tunability is achieved over the spectral range 565-680 nm using a prism dye cell arrangement. The output energy of DFDL is measured at the emission peaks of donor and acceptor for different pump powers and donor-acceptor concentrations. The output pulse of DFDL is found to be as narrow as 40-ps duration, which is nearly 100-fold shorter than the pump pulse. The pulse linewidth is of the order of 0.1 A.  相似文献   

2.
Miniaturization of chemical or biochemical systems creates extremely efficient devices exploiting the advantages of microspaces. Although they are often targeted for implanted tissue engineered organs or drug-delivery devices because of their highly integrated systems, microfluidic devices are usually powered by external energy sources and therefore difficult to be used in vivo. A microfluidic device powered without the need for external energy sources or stimuli is needed. Previously, we demonstrated the concept of a cardiomyocyte pump using only chemical energy input to cells as a driver (Yo Tanaka, Keisuke Morishima, Tatsuya Shimizu, Akihiko Kikuchi, Masayuki Yamato, Teruo Okano and Takehiko Kitamori, Lab Chip, 6(3), pp. 362-368). However, the structure of this prototype pump described there included complicated mechanical components and fabricated compartments. Here, we have created a micro-spherical heart-like pump powered by spontaneously contracting cardiomyocyte sheets driven without a need for external energy sources or coupled stimuli. This device was fabricated by wrapping a beating cardiomyocyte sheet exhibiting large contractile forces around a fabricated hollow elastomeric sphere (5 mm diameter, 250 microm polymer thickness) fixed with inlet and outlet ports. Fluid oscillations in a capillary connected to the hollow sphere induced by the synchronously pulsating cardiomyocyte sheet were confirmed, and the device continually worked for at least 5 days in this system. This bio/artificial hybrid fluidic pump device is innovative not only because it is driven by cells using only chemical energy input, but also because the design is an optimum structure (sphere). We anticipate that this device might be applied for various purposes including a bio-actuator for medical implant devices that relies on biochemical energy, not electrical interfacing.  相似文献   

3.
The first singlet-singlet electronic system, S1<--S0, in thiophosgene has been recorded as a laser induced fluorescence (LIF) excitation and an optical-optical double resonance (OODR) spectrum under jet-cooled conditions. In the OODR process, the sum of the frequencies of the pump and probe lasers must be fixed to the energy difference between a pair of vibronic levels in the S2(v') and S0(v") states. Detection is through the fluorescence from the S2 state. The blocking of a spectrum into its four possible symmetry components is obtained by adjusting the total pump+probe energy such that it matches the energy difference between symmetry selected levels in the S2 and S0 electronic states. In this method the pump laser is used to excite a group of "hot" sequence bands that involve combinations of the nu4 and nu6 antisymmetric vibrations. The additional data that were collected by this method were used to update and refine the analyses of the spectrum. Magnetic dipole transitions are reported for the first time.  相似文献   

4.
刘振  陈曦  郑朴  纪煜哲 《广州化学》2021,46(1):64-71
为了优化热泵系统效率,主要采用编程计算,对以R32、R290以及R410A为工质的两级压缩热泵系统进行性能研究,对比了系统的蒸发温度、冷凝温度、中间温度和混合温度等对COPh的影响。研究发现不完全冷却系统COPh比完全冷却系统更高,在不同工况下存在不同的最佳中间温度,使得COPh有最大值,R290和R410A的混合温度变化对系统COPh影响较大。  相似文献   

5.
The first study in which stochastic simulations of a two‐component molecular machine are performed in the mass‐action regime is presented. This system is an autonomous molecular pump consisting of a photoactive axle that creates a directed flow of rings through it by exploiting light energy away from equilibrium. The investigation demonstrates that the pump can operate in two regimes, both experimentally accessible, in which light‐driven steps can be rate‐determining or not. The number of photons exploited by an individual molecular pump, as well as the precision of cycling and the overall efficiency, critically rely on the operating regime of the machine. This approach provides useful information not only to guide the chemical design of a self‐assembling molecular device with desired features, but also to elucidate the effect of the environment on its performance, thus facilitating its experimental investigation.  相似文献   

6.
In this paper, the feasibility of using cuprous chloride (CuCl) as a working fluid in a new high temperature heat pump with vapor compression is analyzed. The heat pump is integrated with a copper–chlorine (Cu–Cl) thermochemical water splitting cycle for internal heat recovery, temperature upgrades and hydrogen production. The minimum temperature of heat supply necessary for driving the water splitting cycle can be lowered because the heat pump increases the working fluid temperature from 755 K up to ~950 K, at a high COP of ~6.5. Based on measured data available in past literature, the authors have determined the Ts diagram of CuCl, which is then used for the thermodynamic modeling of the cycle. In the heat pump cycle, molten CuCl is flashed in a vacuum where the vapor quality reaches ~2.5%, and then it is boiled to produce saturated vapor. The vapor is then compressed in stages (with inter-cooling and heat recovery), and condensed in a direct contact heat exchanger to transfer heat at a higher temperature. The heat pump is then integrated with a copper–chlorine water splitting plant. The heat pump evaporator is connected thermally with the hydrogen production reactor of the water splitting plant, which performs an exothermic reaction that generates heat at 760 K. Additional source heat is obtained from heat recovery from the hot reaction products of the oxy-decomposer. The heat pump transfers heat at ~950 K to the oxy-decomposer to drive its endothermic chemical reaction. It is shown that the heat required at the heat pump source can be obtained completely from internal heat recovery within the plant. First and second law analyses and a parametric study are performed for the proposed system to study the influence of the compressor's isentropic efficiency and temperature levels on the heat pump's COP. Two new indicators are presented: one represents the heat recovery ratio (the ratio between the thermal energy obtained by internal heat recovery, and the energy needed at the heat pump evaporator), and the other is the specific heat pump work per mole of hydrogen produced. This new heat pump with CuCl as a working fluid can be attractive in other industrial contexts where high temperature heat is needed. One may replace a common heating technology (combustion or electric heating) with the present sustainable method that uses heat recovery and high efficiency temperature upgrading for heating applications.  相似文献   

7.
Apart from the long known visual pigments, another retinal protein complex exists in nature, viz. bacteriorhodopsin from halobacteria. In contrast to the visual pigments such as the rhodopsins, which act as light sensors in the eye, bacteriorhodopsin actually transforms light energy. This energy conversion is connected with the asymmetric incorporation of bacteriorhodopsin in the lattice structure of the purple membrane which forms patches on the cell surface of halobacteria. Alongside the chlorophyll system, the purple membrane system represents the second light energy conversion principle to be discovered in living nature. Bacteriorhodopsin acts as a light-driven proton pump or as the main component of such a pump system. Absorption of light triggers off a cycle of reactions coupled with the spatially oriented uptake and release of a proton. In the intact cell an electrochemical gradient is thus built up across the cell membrane of the bacterium in which part of the absorbed light energy is stored and which is not dependent upon redox processes as in the case of respiration or photosynthesis. This electrochemical gradient can supply the energy required for ATP synthesis in the cell; a reversible proton-translocating ATPase serves as catalyst system.  相似文献   

8.
MexAB-OprM efflux pumps, found in Pseudomonas aeruginosa, play a major role in drug resistance by extruding out drugs and antibiotic molecules from cells. Inhibitors are used to cease the potency of the efflux pumps. In this study, in-silico models are used to investigate the nature of the binding pocket of the MexAB-OprM efflux pump. First, we have performed classical molecular dynamics (MD) simulations to shed light on different aspects of protein–inhibitor interaction in the binding pocket of the pump. Using classical MD simulations, quantum mechanics/molecular mechanics (QM/MM), and various types of analyses, it is found that D13-9001 has a higher binding affinity towards the binding pocket compared to D1 and D2; the results are in sync with the experimental dat. Two stable configurations of D13-9001 are discovered inside the distal pocket which could be one of the primary reasons for the greater efficacy of D13-9001. The free energy barrier upon changing one state to another is calculated by employing umbrella sampling method. Finally, F178 is mutated to have the complete picture as it contributes significantly to the binding energy irrespective of the three inhibitors. Our results may help to design a new generation of inhibitors for such an efflux pump.  相似文献   

9.
Cytochrome c oxidase (CcO) is the terminal enzyme of the cell respiratory chain in mitochondria and aerobic bacteria. It catalyzes the reduction of oxygen to water and utilizes the free energy of the reduction reaction for proton pumping across the inner-mitochondrial membrane, a process that results in a membrane electrochemical proton gradient. Although the structure of the enzyme has been solved for several organisms, the molecular mechanism of proton pumping remains unknown. In the present paper, continuum electrostatic calculations were employed to evaluate the electrostatic potential, energies, and protonation state of bovine heart cytochrome c oxidase for different redox states of the enzyme along its catalytic cycle. Three different computational models of the enzyme were employed to test the stability of the results. The energetics and pH dependence of the P-->F, F-->O, and O-->E steps of the cycle have been investigated. On the basis of electrostatic calculations, two possible schemes of redox-linked proton pumping are discussed. The first scheme involves His291 as a pump element, whereas the second scheme involves a group linked to propionate D of heme a(3). In both schemes, loading of the pump site is coupled to ET between the two hemes of the enzyme, while transfer of a chemical proton is accompanied by ejection of the pumped H(+). The two models, as well as the energetics results are compared with recent experimental kinetic data. The proton pumping across the membrane is an endergonic process, which requires a sufficient amount of energy to be provided by the chemical reaction in the active site. In our calculations, the conversion of OH(-) to H(2)O provides 520 meV of energy to displace pump protons from a loading site and overall about 635 meV for each electron passing through the system. Assuming that the two charges are translocated per electron against the membrane potential of 200 meV, the model predicts an overall efficiency of 63%.  相似文献   

10.
When stimulated Raman pumping (SRP) is applied to a stream of isolated molecules, such as found in a supersonic molecular beam expansion, we show that SRP can neither saturate nor power broaden a molecular transition connecting two metastable levels that is resonant with the energy difference between the pump and Stokes laser pulses. Using the optical Bloch-Feynman equations, we discuss the pumping of the hydrogen molecule from H(2) (v = 0, J = 0, M = 0) to H(2) (v = 1, J = 2, M = 0) as an illustration of how coherent population return severely reduces the SRP pumping efficiency unless the pump and Stokes laser pulses are applied with an appropriate relative delay and ratio of intensities.  相似文献   

11.
In this work, the measured excess molar enthalpies of absorption heat pump working pairs (refrigerant + absorbent), viz. water + mono-, di- and tri-ethylene glycol, water + glycerol, and ethanol + di- and tri-ethylene glycol mixtures are presented at 298.15 K and ambient pressure using a Setaram Calvet C80 calorimeter. The experimental results are represented and correlated by a Redlich–Kister type equation. Modeling of the excess enthalpies has been performed using the UNIFAC molecular group-contribution method, and UNIQUAC Gibbs energy model. In addition, the data and results are used to predict the Gibbs energy of all binary systems. This allows a preliminary evaluation of the suitability of the binary systems as heat pump working pairs.  相似文献   

12.
We have analyzed experimental data from a number of exothermic processes in which molecules in well-defined initial states are deactivated by inelastic, dissociative, or reactive collisions. Further, we analyze deactivation processes that do not occur in molecules despite their containing high levels of excitation. Significant common elements are found among these forms of deactivation. The initial step consists of transition to a product state involving minimum rotation state change (Delta j) consistent with energy conservation. Frequently, this process is near-energy-resonant. More critically, it may frequently require substantial angular momentum (AM) change. Analysis of experimental data indicates that constraints act upon on the formation of products in processes that involve release of excess energy. These constraints are associated with the magnitude of AM that must be generated for the initial transition to occur and this AM "load" increases with the amount of energy to be released. In general, the probability of generating rotational AM falls rapidly as Delta j increases, and this effectively limits the size of energy gap that may be bridged by a given reactant pair and at some point the constraint is sufficient to constitute a barrier that prevents the process from taking place. The choice of reactant species strongly affects the probability of each process that increases (i) when molecules efficiently interconvert momentum and (ii) when many product states are available in the critical near-resonant region. These factors increase the proportion of initial trajectories that possess the energy and momentum necessary to open a "product" channel. Evidence is presented showing that AM load-reduction strategies lead to marked enhancement of rates of collision-induced processes, suggesting that reduction of constraints in the exit channels from the transition state may constitute a previously unrecognized form of catalysis.  相似文献   

13.
There are several developments taking place in the field of sensors driven by the world today requirements. One of the most important novelties of the last two decades in the field is represented by the hydrogel-based sensors which constitute a wide family of innovative smart sensing devices relevant for many different applications. Hydrogels in fact are hydrophilic, biocompatible and highly water swellable polymer networks able to convert chemical energy into mechanical energy, with the great peculiarity to be able to respond to external stimuli. These characteristics have ensured them considerable recognition as valuable tool for smart sensing and diagnostics. The aim of this review is to focus on the advances obtained in the field in the last ten years.  相似文献   

14.
Relaxation dynamics of plasmons in Au−SiO2 core-shell nanoparticles have been followed by femtosecond pump-probe technique. The effect of excitation pump energy and surrounding medium on the time constants associated with the hot electron relaxation has been elucidated. A gradual increase in the electron-phonon relaxation time with pump energy is observed and can be attributed to the higher perturbation of the electron distribution in AuNPs at higher pump energy. Variation in time constants for the electron-phonon relaxation in different solvents is rationalized on the basis of their thermal conductivities, which govern the rate of dissipation of heat of photoexcited electrons in the nanoparticles. On the other hand, phonon-phonon relaxation is found to be much less effective than electron-phonon relaxation for the dissipation of energy of the excited electron and the time constants associated with it remain unaffected by thermal conductivity of the solvent.  相似文献   

15.
《Chemical physics》1986,101(3):371-379
Intermolecular transfer of excitation energy is studied in model systems containing luminescent donor molecules (D) and acceptor molecules (A) which constitute deep energy traps. It has been assumed that the donor and acceptor molecules form a regular lattice in which the energy transfer takes place in a hopping manner. Within the limits of the model, it has further been assumed that elementary processes are responsible for the deactivation of excited donor molecules (D*). These processes are: fluorescence, internal conversion and non-radiative energy transfer D* → D and D* → A. The general considerations concern the partial and total fluorescence quantum yield of the system and the number of energy transfers before its deactivation. A more detailed analysis and calculations, leading to analytical expressions describing these quantities, have been made for linear systems. It is shown, that has approach, under the conditions where in the system only the migration of energy is observed and no other means of energy deactivation exist leads to the same value of the average number of energy transfers as was obtained earlier by Montroll and a mean relaxation time as given by Movaghar et al.  相似文献   

16.
There is growing evidence, both theoretical and experimental, that the primary optical excitations in conjugated polymers are of excitonic nature. They are formed instantaneously upon photoexcitation and migrate incoherently among chain segments differing in length and, concomitantly, in excitation energy. Migration is associated with spectral relaxation manifest in the occurrence of a dynamic Stokes shift. Time-resolved photoluminescence as well as energy transfer studies support this conceptual framework. In systems of the polyphenylenevinylene family the exciton binding energy is estimated to be about 0.4 eV, comparable to that in polydiacetylenes. However, transfer of a charge from an excited chain segment to neighboring chain segments costs less energy. Taking into account that all energy levels are disorder broadened this ensures that a fraction of excitations will find it energetically more favorable to decompose into an electron-hole pair on adjacent chains (off-chain or indirect exciton) that acts as precursor for photoconduction. Exciton breaking can be stimulated by a strong electric field as documented by cw and time resolved spectroscopy. Recent fluorescence as well as pump and probe measurements on a ladder type polymer (LPPP) with 150 fs time resolution will be reported which support the above conceptual framework and document the occurrence of stimulated emission.  相似文献   

17.
The Monte Carlo minimization (MCM) method of Li and Scheraga is an efficient tool for generating low energy minimized structures of peptides, in particular the global energy minimum (GEM). In a recent article we proposed an enhancement to MCM, called the free energy Monte Carlo minimization (FMCM) procedure. With FMCM the conformational search is carried out with respect to the harmonic free energy, which approximates the free energy of the potential energy wells around the energy minimized structures (these wells are called localized microstates). In this work we apply both methods to the pentapeptide Leu-enkephalin described by the potential energy function ECEPP, and study their efficiency in identifying the GEM structure as well as the global harmonic free energy (GFM) structure. We also investigate the efficiency of these methods to generate localized microstates, which pertain to different energy and harmonic free energy intervals above the GEM and GFM, respectively. Such microstates constitute an important ingredient of our statistical mechanical methodology for analyzing nuclear magnetic resonance data of flexible peptides. Aspects of this methodology related to the stability properties of the localized microstates are examined. © 1997 by John Wiley & Sons, Inc.  相似文献   

18.
A passive pumping method for microfluidic devices   总被引:3,自引:0,他引:3  
Walker G  Beebe DJ 《Lab on a chip》2002,2(3):131-134
The surface energy present in a small drop of liquid is used to pump the liquid through a microchannel. The flow rate is determined by the volume of the drop present on the pumping port of the microchannel. A flow rate of 1.25 microL s(-1) is demonstrated using 0.5 microL drops of water. Two other fluid manipulations are demonstrated using the passive pumping method: pumping liquid to a higher gravitational potential energy and creating a plug within a microchannel.  相似文献   

19.
We present direct evidence of enhanced non‐radiative energy transfer between two J‐aggregated cyanine dyes strongly coupled to the vacuum field of a cavity. Excitation spectroscopy and femtosecond pump–probe measurements show that the energy transfer is highly efficient when both the donor and acceptor form light‐matter hybrid states with the vacuum field. The rate of energy transfer is increased by a factor of seven under those conditions as compared to the normal situation outside the cavity, with a corresponding effect on the energy transfer efficiency. The delocalized hybrid states connect the donor and acceptor molecules and clearly play the role of a bridge to enhance the rate of energy transfer. This finding has fundamental implications for coherent energy transport and light‐energy harvesting.  相似文献   

20.
Kwon GH  Jeong GS  Park JY  Moon JH  Lee SH 《Lab on a chip》2011,11(17):2910-2915
Stimuli-responsive hydrogels have attracted considerable interest in the field of microfluidics due to their ability to transform electrical energy directly into mechanical work through swelling, bending, and other deformations. In particular, electroactive hydrogels hold great promise for biomedical micropumping applications such as implantable drug delivery systems. In such applications, energy consumption rate and durability are key properties. Here, we developed a valveless micropump system that utilizes a hydrogel as the main actuator, and tested its performance over 6 months of continuous operation. The proposed micropump system, powered by a single 1.5 V commercial battery, expended very little energy (less than 750 μWs per stroke) while pumping 0.9 wt% saline solution under a low voltage (less than 1 V), and remained fully functional after 6 months. CFD simulations were conducted to improve the microchannel geometry so as to minimize the backflow caused by the valveless mechanism of the system. Based on the simulation results, an asymmetric geometry and a stop post were introduced to enhance the pumping performance. To demonstrate the feasibility of the proposed system as a drug delivery pump, an anti-cancer drug (adriamycin) was perfused to human breast cancer cells (MCF-7) using the pump. The present study showed that the proposed system can operate continuously for long periods with low energy consumption, powered by a single 1.5 V battery, making it a promising candidate for an implantable drug delivery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号