首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption characteristics of a variety of synthetic peptide hormones and di-, tri- and tetrapeptides on Cu(II) immobilized on two commercially available high-performance chelating gels run under various experimental conditions are described. Methods for determining the concentration of immobilized Cu(II) in situ are also described. The Cu(II)-charged columns exhibit a net negative charge as judged from the significantly higher retention of some basic peptides in the absence of NaCl in the equilibration and elution buffers. At higher NaCl concentrations (2-4 M), aromatic interactions seem to be superimposed on the metal ion affinity characteristics of the peptides. The relationship between resolution of peptides and the concentration of immobilized Cu(II) ions has also been established for the Chelating Superose gel where 40 mumol Cu(II) ml-1 gel apparently gives the optimum resolution. The nature of the gel matrix also plays a role in the resolution of some peptides, the extent of which is difficult to predict. The results obtained also suggest that peptides containing aromatic and hydroxy amino acids are retarded more than those which lack them. Moreover, these same amino acids apparently strengthen the existing strong binding of peptides containing His, Trp or Cys to a Chelating Superose-Cu(II) column. Dipeptides with C-terminal His (i.e., X-His) are neither bound nor retarded on a column of Chelating Superose-Cu(II) whereas those having the structure His-X are strongly bound. Some tri- and tetrapeptides containing His were also found not to bind to the column. The underlying cause of this anomalous adsorption behaviour is discussed and is ascribed to "metal ion transfer" arising from the relatively higher affinity of such peptides towards immobilized Cu(II) ions than the chelator groups (iminodiacetate) which are covalently bound to the gel matrix.  相似文献   

2.
Supramolecular assembly of peptides and proteins into amyloid fibrils is of multifold interest, going from materials science to physiopathology. The binding of metal ions to amyloidogenic peptides is associated with several amyloid diseases, and amyloids with incorporated metal ions are of interest in nanotechnology. Understanding the mechanisms of amyloid formation and the role of metal ions can improve strategies toward the prevention of this process and enable potential applications in nanotechnology. Here, studies on Zn(II) binding to the amyloidogenic peptide Aβ11-28 are reported. Zn(II) modulates the Aβ11-28 aggregation, in terms of kinetics and fibril structures. Structural studies suggest that Aβ11-28 binds Zn(II) by amino acid residues Glu11 and His14 and that Zn(II) is rapidly exchanged between peptides. Structural and aggregation data indicate that Zn(II) binding induces the formation of the dimeric Zn(II)(1)(Aβ11-28)(2) species, which is the building block of fibrillar aggregates and explains why Zn(II) binding accelerates Aβ11-28 aggregation. Moreover, transient Zn(II) binding, even briefly, was enough to promote fibril formation, but the final structure resembled that of apo-Aβ11-28 amyloids. Also, seeding experiments, i.e., the addition of fibrillar Zn(II)(1)(Aβ11-28)(2) to the apo-Aβ11-28 peptide, induced aggregation but not propagation of the Zn(II)(1)(Aβ11-28)(2)-type fibrils. This can be explained by the dynamic Zn(II) binding between soluble and aggregated Aβ11-28. As a consequence, dynamic Zn(II) binding has a strong impact on the aggregation behavior of the Aβ11-28 peptide and might be a relevant and so far little regarded parameter in other systems of metal ions and amyloidogenic peptides.  相似文献   

3.
The capillary electrophoretic separation of Fe(II), Cu(II) and Zn(II) ions in an acidic buffer solution (pH 2.5) by complexation with 1,10-phenanthroline is investigated. As 1,10-phenanthroline is a neutral ligand, the positively charged metal complexes formed migrate in the same direction as the EOF, providing a rapid separation of metal ions in acidic buffers. The method was applied to the determination of metal ions in vitamin tablets. Received: 5 January 1998 / Revised: 27 March 1998 / Accepted: 15 May 1998  相似文献   

4.
The capillary electrophoretic separation of Fe(II), Cu(II) and Zn(II) ions in an acidic buffer solution (pH 2.5) by complexation with 1,10-phenanthroline is investigated. As 1,10-phenanthroline is a neutral ligand, the positively charged metal complexes formed migrate in the same direction as the EOF, providing a rapid separation of metal ions in acidic buffers. The method was applied to the determination of metal ions in vitamin tablets. Received: 5 January 1998 / Revised: 27 March 1998 / Accepted: 15 May 1998  相似文献   

5.
Wang R  Sens DA  Garrett S  Somji S  Sens MA  Lu X 《Electrophoresis》2007,28(16):2942-2952
Metallothioneins (MTs) are a family of cysteine-rich metalloproteins which strongly bind to heavy metals, such as Cd(II), Zn(II), and Cu(I). Previous works by other group using gel electrophoresis and fluorescence showed MTs were resistant to proteolytic digestion by a variety of enzymes, raising the difficulties in proteomic identification of MTs. The present work was attempted to analyze the resistance of MTs to trypsin using LC with MS/MS (LC-MS/MS), which was able to determine the sequences of the produced peptides and thus precisely characterize the cleavages. The results showed that metal-saturated MTs were completely resistant to trypsin. This resistance problem could be overcome by the addition of EDTA to MT samples, which rendered MTs readily digested into peptides and identified by MS/MS. Interestingly, the partially metal binding MTs were digested into peptides predominantly with miss cleavages which were well dependent on the amount of heavy metals bound to MTs. An explanation for these observations was proposed. The potential applications of the MT's resistance to trypsin in isolation and identification of MTs in complex mixtures such as cultured cells was demonstrated. The preliminary data also showed the same proteomic approach of proteolytic digestion followed by MS/MS analysis may provide information on metal binding status of MTs, along with the identification of MTs in a mixture.  相似文献   

6.
Two histidine-rich branched peptides with one lysine as a branching unit have been designed and synthesized by solid-phase peptide synthesis. Their complex formation with Cu(II) and Zn(II) as well as their ability to attenuate the metal-ion induced amyloid aggregation has been characterized. Both peptides can keep Cu(II) and Zn(II) in complexed forms at pH 7.4 and can bind two equivalents of metal ions in solutions with excess metal. The stoichiometry, stability and structure of the complexes formed have been determined by pH potentiometry, UV-Vis spectrophotometry, circular dichroism, EPR and NMR spectroscopy and ESI-MS. Both mono- and bimetallic species have been detected over the whole pH range studied. The basic binding mode is either a tridentate {N(amino), N(amide), N(im)} or a histamine-type of coordination which is complemented by the binding of far imidazole or amino groups leading to macrochelate formation. The peptides were able to prevent Cu(II)-induced Aβ(1-40) aggregation but could not effectively compete for Zn(II) in vitro. Our results suggest that branched peptides containing potential metal-binding sites may be suitable metal chelators for reducing the risk of amyloid plaque formation in Alzheimer's disease.  相似文献   

7.
Nonaqueous capillary electrophoresis was evaluated for its potential to separate peptides in methanolic background electrolytes in comparison to aqueous-methanol (50% v/v) and water. Isomeric aspartyl dipeptides and Leu- and Met-enkephalin served as model compounds. pK(a) values were determined in the three solvent systems based on the apparent pH scale and in the case of methanol additionally based on the conventional pH scale. Changing from water to methanol led to an increase of the ionization constants describing the dissociation equilibria of the carboxyl group and the amino group, respectively. The pK(a) shift was more pronounced for the carboxylic acid function leading to a compression of the mobility-pH curve. As reported for aqueous buffers, efficient separations of the peptides were achieved in methanolic background electrolytes including the resolution of the diastereomers of the isomeric alpha- and beta-aspartyl dipeptides. In contrast to aqueous buffers, the separation of Leu- and Met-enkephalin could also be obtained in buffers in methanol at high pH.  相似文献   

8.
郑志侠屈锋  林金明 《中国化学》2003,21(11):1478-1484
Chiral separation of dausyl amino acids by capillary electrophoresis using mixed selectors of Mn(ll)-L-alanine complex and β-cyclodextrin (β-CD) was studied. Resolution was considerably superior to that obtained by using either Mn (Ⅱ)-L-alanine complex or β-CD alone. The effects of separation parameters, such as pH value of buffer solution, capillary temperature, the concentration of Mn (Ⅱ)-L-alanine complex, the types of CD and ligand on the migration times and resolutions were investigated. Six different transition metal complexes,Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Hg(Ⅱ) and Cd(Ⅱ)-L-alanine complexes have been employed and compared with Mn(Ⅱ)complex. Differences in retention and selectivity were found.The substitution of Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ) and Ni(Ⅱ) for Mn(Ⅱ) resulted in a better chiral resolution while Hg(Ⅱ) and Cd(Ⅱ) showed poorer resolution abilities. The chiral separation mechanism was also discussed briefly.  相似文献   

9.
Self-assembly of amyloidogenic peptides and their metal complexes are of multiple interest including their association with several neurological diseases. Therefore, a better understanding of the role of metal ions in the aggregation process is of broad interest. We report pH-dependent structural and aggregation studies on Zn(II) binding to the amyloidogenic peptide Ab11-28. The results suggest that coordination of the N-terminal amine to Zn(II) is responsible for the inhibition of amyloid formation and the overall charge for amorphous aggregates.  相似文献   

10.
Motilin is a gut hormone, which is involved in gastrointestinal motility. Capillary electrophoresis studies were made on 24 peptides that are N-terminal, C-terminal or internal fragments of motilin. The isoelectric point, total charge and hydrophobicity were calculated for all of the peptides. The effects of buffers and pH on migration time and resolution were studied. These included citrate buffer, pH 2.5; phosphate buffer, pH 7.0 and borate buffer, pH 10.0. A capillary zone electrophoresis method was developed to resolve 14 of the motilin peptides. Secondary structure predictions were made using the Chou-Fasman method. Circular dichroism spectra were collected to confirm presence of alpha-helix in several fragments. Effects of charge, hydrophobicity, secondary structure and length of the motilin fragments on migration time were studied.  相似文献   

11.
Popa TV  Mant CT  Hodges RS 《Electrophoresis》2004,25(9):1219-1229
The present study compares a charge/hydrophobicity capillary electrophoresis (CE) approach to reversed-phase high-performance liquid chromatography (RP-HPLC) for the separation of three series of four synthetic, random coil peptide standards. Each series has peptides of the same positive charge (+1, +2 and +3 series) and length but differing in hydrophobicity. Complete resolution of the 12 peptides was achieved via a novel CE approach: a capillary zone electrophoresis (CZE) mode effected a separation of identically charged peptides; within each charged group of peptides, the addition of perfluorinated acid anionic ion-pairing reagents allowed resolution of the peptides through a mechanism based on peptide hydrophobicity which we have termed ioninteraction (II)-CZE. The peak capacity and peptide resolution of this CE approach was superior to that of RP-HPLC and stresses an important role for CE for peptide/proteomic applications.  相似文献   

12.
A radiochemical displacement method for the determination of micro amounts of Hg(II) has been developed. 65Zn was displaced from the Zn-1-(2-pyridylazo-2-naphthol) complex at pH 5 in borate buffers by Hg (II). 10-80 micrograms of mercury could be determined. Interference of various metal ions and methods for suppression have also been carried out.  相似文献   

13.
A method for improving separations of peptides and other positively charged species in capillary zone electrophoresis with untreated capillaries using acidic buffers containing tetraalkylammonium cations is described. Tetramethylammonium and tetrabutylammonium cations dynamically modify the capillary surface, leading to a reversal in the direction of the electroosmotic flow. As a result, the adsorption of positively charged peptides and proteins is minimized, and resolution and peak capacity are improved as the migration of cationic analytes is counterbalanced by the electroosmotic flow. The combining effect of reversing electroosmotic flow and cyclodextrin inclusion complexation on separations of closely related peptides and a protein mixture, as well as tryptic digest of hemoglobin is demonstrated.  相似文献   

14.
Kinetics of the hydroxylaminolysis of acetamide, glycinamide, glycylglycine and triglycine have been studied in the range of temperatures 37-60 degrees C as a function of pH and hydroxylamine concentration. Rate constants for specific acid, general-acid and general-base catalyzed pathways have been determined for all substrates (for glycine derivatives rate constants for different protonation forms were obtained). Testing different metal ions as possible reaction catalysts revealed a significant catalytic effect of Zn(II) on the hydroxylaminolysis of glycine substrates, but not acetamide. On the basis of the kinetic results, a mechanism of Zn(II) catalysis is proposed, which involves the coordination of the metal ion to the alpha-amino group of the substrate and the base-assisted nucleophilic attack of hydroxylamine on the bound substrate. The product analysis by proton NMR shows that the primary reaction product in the catalytic reaction is glycine hydroxamic acid, which undergoes further Zn(II)-catalyzed hydrolysis to glycine. Thus the final result of the Zn(II)-catalyzed treatment of peptides by hydroxylamine is hydrolytic cleavage.  相似文献   

15.
Immobilized metal affinity chromatography (IMAC) was investigated as a method of recovery for green fluorescent protein (GFPuv). It was found that in the absence of genetic modification to enhance metal affinity, GFPuv displayed strong metal affinity to Cu(II) and Ni(II), and weak or negligible affinity to Zn(II) and Co(II). Changes in the mobile phase NaCl concentration during Ni(II)-IMAC strongly affected purity and yield of GFPuv, with fine resolution under higher NaCl concentrations. Finally, IMAC via Cu(II) and Zn(II) with intervening diafiltration was used to recover GFPuv with high yield and purity.  相似文献   

16.
Structural chemistry of a green fluorescent protein Zn biosensor   总被引:5,自引:0,他引:5  
We designed a green fluorescent protein mutant (BFPms1) that preferentially binds Zn(II) (enhancing fluorescence intensity) and Cu(II) (quenching fluorescence) directly to a chromophore ligand that resembles a dipyrrole unit of a porphyrin. Crystallographic structure determination of apo, Zn(II)-bound, and Cu(II)-bound BFPms1 to better than 1.5 A resolution allowed us to refine metal centers without geometric restraints, to calculate experimental standard uncertainty errors for bond lengths and angles, and to model thermal displacement parameters anisotropically. The BFPms1 Zn(II) site (KD = 50 muM) displays distorted trigonal bipyrimidal geometry, with Zn(II) binding to Glu222, to a water molecule, and tridentate to the chromophore ligand. In contrast, the BFPms1 Cu(II) site (KD = 24 muM) exhibits square planar geometry similar to metalated porphyrins, with Cu(II) binding to the chromophore chelate and Glu222. The apo structure reveals a large electropositive region near the designed metal insertion channel, suggesting a basis for the measured metal cation binding kinetics. The preorganized tridentate ligand is accommodated in both coordination geometries by a 0.4 A difference between the Zn and Cu positions and by distinct rearrangements of Glu222. The highly accurate metal ligand bond lengths reveal different protonation states for the same oxygen bound to Zn vs Cu, with implications for the observed metal ion specificity. Crystallographic anisotropic thermal factor analysis validates metal ion rigidification of the chromophore in enhancement of fluorescence intensity upon Zn(II) binding. Thus, our high-resolution structures reveal how structure-based design has effectively linked selective metal binding to changes in fluorescent properties. Furthermore, this protein Zn(II) biosensor provides a prototype suitable for further optimization by directed evolution to generate metalloprotein variants with desirable physical or biochemical properties.  相似文献   

17.
The application of capillary zone electrophoresis to the separation and determination of metal ions after the precolumn formation of negatively charged chelates is described. Multi-component mixtures of transition metal complexes with 8-hydroxyquinoline-5-sulphonic acid (HQS) were separated in about 10 min in a fused-silica capillary column with a borate buffer of pH 9.2 at an applied voltage of 15 kV followed by direct UV detection. The capillary pretreatment with an electroosmotic flow modifier, namely a tetraalkylammonium salt, is necessary to achieve resonable migration times of these metal complexes. Incorporating the chelating reagent in the electrophoretic buffer markedly improves the detectability of relatively unstable chelates, such as those of Co(II), Zn(II) and Cd(II), and allows the separation of metal ions that form unstable HQS chelates, such as Mn(II) and alkaline earth metals. The effects of electrophoretic buffer parameters affecting the complexation reaction and migration behaviour are discussed. Linearity of calibration graphs is observed for about three orders of magnitude with sub-ppm detection limits. The applicability of the method to the analysis of real samples is demonstrated.  相似文献   

18.
The inner surface of fused silica capillaries has been covalently modified with different porphyrins (deuteroporphyrin, complexes of deuteroporphyrin with metal ions Fe(III), Cu(II), Zn(II), Ni(II), and Cu(II)-meso-tetra (carboxyphenyl) porphyrin) and it was applied for the separation of biologically active peptides by open-tubular capillary electrochromatography. Separations were performed in a mobile phase composed of 25?mM potassium phosphate, pH 4.0, 5%?v/v ACN and 10?mM hydroquinone. Changes in the effective electrophoretic mobility of peptides were studied concerning porphyrin central metal atom, attachment geometry, and the presence of coordinating or aromatic amino acid residues in the peptide sequence. The results showed that differences in metal core on the porphyrin and the spatial conformation of attached porphyrin result in changes in the analyte interaction with the stationary phase.  相似文献   

19.
Saito S  Sasamura S  Hoshi S 《The Analyst》2005,130(5):659-663
A high resolution of doubly charged first row transition (Fe, Cu, Zn, Ni, Co, Mn) and heavy metal (Pb, Cd, Hg) ions was achieved in capillary electrophoresis (CE) with high sensitivity (sub-micromol dm(-3) level), using NN,N'N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) as a pre-capillary derivatizing agent. The non-charged reagent, TPEN, was applied to capillary zone electrophoresis (CZE) for the first time. Since complete spatial separation between the complexes and the ligand was carried out in a carrier buffer, which was free of TPEN, kinetic inertness of metal complexes was necessary for the detection in this pre-capillary method. All the nine listed metal complexes were detected: Ca(2+), Mg(2+), Al(3+), Fe(3+), and Co(3+) complexes were undetectable. This, interestingly, suggests that those nine cations form kinetically inert tpen complexes without strong charge-charge interactions between the metal ion and the ligand. It is expected that the hard-soft-acid-base (HSAB) principle governed the kinetics selectivity. With respect to the electrophoretic behavior, the addition of chloride ion and methanol to the carrier significantly improved the resolution. This is due to the formation of ternary complexes or ion aggregates and the solvation effect, respectively. These effects provided a satisfactory baseline resolution among the nine metal ions. An application to biological samples was demonstrated. Some metal ions in human serum and urine were successfully detected in a simple process without the need for deproteinization using a non-coated fused-silica capillary because of the differenciation in the direction of migration between organic matter and complexes.  相似文献   

20.
In an effort to probe the role of the Zn(II) sites in metallo-beta-lactamase L1, mononuclear metal ion containing and heterobimetallic analogues of the enzyme were generated and characterized using kinetic and spectroscopic studies. Mononuclear Zn(II)-containing L1, which binds Zn(II) in the consensus Zn1 site, was shown to be slightly active; however, this enzyme did not stabilize a nitrocefin-derived reaction intermediate that had been previously detected. Mononuclear Co(II)- and Fe(III)-containing L1 were essentially inactive, and NMR and EPR studies suggest that these metal ions bind to the consensus Zn2 site in L1. Heterobimetallic analogues (ZnCo and ZnFe) analogues of L1 were generated, and stopped-flow kinetic studies revealed that these enzymes rapidly hydrolyze nitrocefin and that there are large amounts of the reaction intermediate formed during the reaction. The heterobimetallic analogues were reacted with nitrocefin, and the reactions were rapidly freeze quenched. EPR studies on these samples demonstrate that Co(II) is 5-coordinate in the resting state, proceeds through a 4-coordinate species during the reaction, and is 5-coordinate in the enzyme-product complex. These studies demonstrate that the metal ion in the Zn1 site is essential for catalysis in L1 and that the metal ion in the Zn2 site is crucial for stabilization of the nitrocefin-derived reaction intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号