共查询到19条相似文献,搜索用时 93 毫秒
1.
基于Caffe深度学习框架的车牌数字字符识别算法研究 总被引:1,自引:0,他引:1
在车牌字符识别的某些场合中,获得的字符通常存在切割不均匀、光照对比度强烈、遮挡严重等强噪声污染.针对被强噪声污染的数字字符,提出一种基于Caffe深度学习框架的字符识别算法,在Caffe框架下搭建卷积神经网络,并对网络参数训练获得了一个鲁棒性强、识别精度高的网络结构.实验结果表明,在低噪声、中度噪声、强噪声污染情况下,文章中提出的方法相比当前典型的识别方法,在数字字符识别上均具有较好的识别能力,平均识别率高出将近5%,而在强噪声污染情况下,识别效果具有更加明显的优势. 相似文献
2.
3.
针对票据在识别时出现数据漏检率高、识别精度低的问题,提出文本检测模型ENCRAFT与识别模型DLCNN。在文本检测模型CRAFT的基础上,ENCRAFT修改其原始的特征提取网络的结构,利用未经池化的特征图进行融合,减少了细小特征的丢失,并增大监督特征图的分辨率,以提供更丰富的监督信息,从而提高模型检测率;DLCNN利用深层的卷积网络与浅层的循环网络实现对中文票据的高精度识别。实验结果表明,该方法在多个票据数据上的检测率与识别精度均有明显提升。 相似文献
4.
基于深度学习的神经网络在中英文的图像文字识别中有着广泛的应用,而在维吾尔文识别的相关研究中应用有限.针对维吾尔文属于粘连性文字难于识别的问题,建立了维吾尔文图像识别的数据集,提出了TRBGA模型,并与主流的网络做了对比实验.实验表明:所提出的识别方法准确率达到了99.395%,优于传统的识别方法. 相似文献
5.
为了应对海量的字符(手写)识别,提出了一种将统一计算设备架构(Compute Unified Device Architecture,CUDA)和深度置信网络相结合的方法进行手写字符识别。该方法结合受限玻尔兹曼机和反向传播神经网络形成深度置信网络对字符图片数据进行识别,并且使用CUDA在图形处理器(GPU)上进行并行计算来完成识别过程。实验结果表明,使用该方法后,在不降低识别精度的情况下手写字符识别的速度大幅提升。 相似文献
6.
蔡策;秦训鹏;常艳昌;彭浩 《合肥工业大学学报(自然科学版)》2024,(5):635-641+702
在自动化装配线上轮胎与轮毂装配时,需要检测与识别轮胎表面的压印字符串,从而得到轮胎的品牌、型号、尺寸以及生产的年周号等信息,用以管理轮胎信息以及监控轮胎的流向。针对轮胎表面压印字符串的检测与识别问题,文章提出一种基于深度学习的轮胎胎面关键字符的检测与识别方法,搭建了可编程逻辑控制器(programmable logic controller, PLC)、工控机和工业相机的自动化检测与识别平台,通过霍夫变换及坐标变换对采集后的图像进行预处理,采用改进的更快速的区域卷积神经网络(faster region-based convolutional neural network, Faster RCNN)算法为基础检测出目标字符串位置,再通过卷积递归神经网络(convolutional recurrent neural network, CRNN)对检测出的目标字符串进行识别,同时利用编码规则校验识别结果,以提升识别结果的准确率。实验结果表明,改进后的算法在进行轮胎压印字符串的检测与识别时其准确率超过97.0%,满足工业生产应用需求。 相似文献
7.
随着信息技术在工业制造领域的深入应用,工业制造大数据研究正成为实现智能制造、帮助政府指导制造企业转型升级的重要参考依据.在传统的钢铁、铝材等金属制造行业,更是存在生产方式粗放、生产工艺简单等问题.因此,迫切需要利用人工智能等新一代信息技术来改善生产流程,提高生产效率.在使用铝材时,必须检查铝材表面.现有的铝材表面缺陷检... 相似文献
8.
为解决传统车牌字符检测方法可靠性差、效率低的问题,提出采用haar级联检测结合深度学习方法的卷积神经网络车牌字符识别方法。采用haar级联分类器提取出图片中车牌的位置,通过灰度、阈值、腐蚀、膨胀等预处理技术提取出车牌字符;通过收集字符数据,对CNN神经网络在角度倾斜、光照变化和噪声污染条件下进行训练,使用训练后得到的模型对车牌字符图片进行识别。实验结果表明, 该方法识别车牌字符正确率较高,在角度倾斜、光照变化和噪声污染条件下的准确性和稳定性较好,能够有效地降低车标识别的错误率。 相似文献
9.
针对传统车牌字符检测方法存在效率低、可靠性差的情况,提出应用Haar级联检测结合深度学习方法的卷积神经网络车牌字符识别法.首先采用Haar级联分类器提取出图片中车牌的位置,通过灰度、阈值、腐蚀、膨胀等预处理提取出车牌字符;然后收集字符数据,对CNN神经网络在角度倾斜、光照变化和噪声污染复杂条件下进行训练,使用训练后得到的模型对车牌字符图片进行识别.实验结果表明,该方法识别车牌字符正确率较高,在角度倾斜、光照变化等噪声污染条件下的准确性和稳定性较好,能够有效地降低车标识别的错误率. 相似文献
10.
行为检测在自动驾驶、视频监控等领域的广阔应用前景使其成为了视频分析的研究热点。近年来,基于深度学习的方法在行为检测领域取得了巨大的进展,引起了国内外研究者的关注,对这些方法进行了全面的梳理和总结,介绍了行为检测任务的详细定义和面临的主要挑战;从时序行为检测和时空行为检测2个方面对相关文献做了细致地分类,综合分析了每一类别中不同研究方法的思路和优缺点,并阐述了基于弱监督学习、图卷积神经网络、注意力机制等新兴研究话题的相关方法;介绍了行为检测领域常用的数据集以及性能评估指标,在这些数据集上比较了几种典型方法的性能;总结了当前行为检测方法需要解决的问题以及进一步发展的研究方向。 相似文献
11.
针对牙刷分拣中的定位问题,在确定牙刷位置的基础上采用深度学习实现牙刷姿态识别.对牙刷图像进行去噪增强,通过阈值分割提取感兴趣区域,计算图像的几何矩获得牙刷的方向角和外接矩形,以外接矩形的中心作为牙刷位置.用矩形框内的牙刷图像训练残差网络模型,当模型正确率达到要求时保存该模型,用于判断图像中牙刷的姿态.测试结果表明,该方... 相似文献
12.
肺结节作为肺癌早期诊断的重要特征,对其识别和类型判断具有重要意义.目前使用迁移学习的识别算法存在着源数据集与目标数据集差距过大问题,对于肺结节特征提取不足,导致效果不佳.故此提出了基于卷积神经网络的改进神经网络模型.将预训练的GooLeNet Inception V3网络与设计的特征融合层结合,提高网络对特征的提取能力;为确定最佳组合方式,对各组以准确率为标准进行测试.实验在LUNA16肺结节数据集上进行.进行分组测试结果表明,改进的网络准确率达88.80%,敏感度达87.15%.在识别准确率和敏感性指标上,与GooLeNet Inception V3算法相比,分别提高了2.72,2.19个百分点.在不同数据集比例下进行实验,同样达到了更优的效果,具有更好的泛化能力.可以给临床诊断提供相对客观的指标依据. 相似文献
13.
《天津理工大学学报》2019,(6):35-40
目前互联网上会存在海量的网络流量数据信息,这些海量的网络流量数据信息还未得到充分性的利用,如果有效的采取一些必要的方法或者手段,分析整个的网络流量挖掘信息对于后期的网络发展趋势,挖掘网络当中所存在的异常状态并且有采取针对性的措施,这对于后期的网络应急响应能力的增强、抵御网络不法攻击行为、快速的维护网络空间安全等方面都具有非常重大的价值及意义.本文基于网络流量识别的基本需求,分析了深度学习经典模型-CNN的基本原理,在此基础上将原始流量进行分层处理,并建立了基于注意力机制的改进的CNN算法的网络流量识别模型,最后在国际标准数据集上进行仿真分析.实验测试结果表明,该模型可以实现对各类网络流量有效识别. 相似文献
14.
《齐齐哈尔大学学报(自然科学版)》2019,(3)
针对体液细胞病理诊断自动分类识别的问题,构建一种基于深度卷积神经网络的自动化识别模型(CNN-LS)。首先对图像样本进行灰度级转换、ZCA白化、归一化与标注处理,降低图像特征间的相关性与数据冗余。其次,在CNN-LS模型构建过程中引入改进的激活函数(LReLU-Softplus)用于提高模型的收敛速度和避免可能出现的饱和非线性问题,并通过实验验证获取CNN-LS模型的最佳卷积核数量和尺寸大小。最后将CNN-LS与CS+SVM,PCA+QSOFM,ANN,CNN这4种分类方法做性能对比。实验表明CNN-LS模型在针对腹膜腔脱落细胞病理图像的癌细胞分类识别过程中具有较明显的优势。 相似文献
15.
16.
基于MHMM的脱机手写体字符识别 总被引:1,自引:0,他引:1
对隐马尔可夫模型(HMM)的训练方法及模型参数的选取进行了探讨,并将HMM理论用于脱机手写体识别中,建立了一种基于字符投影变换图像的边界链码特征的多重隐马尔可夫模型(MHMM).实验结果表明,该方法是可行的,且具有良好的兼容性和灵活性,可应用于手写体字符的自动识别中. 相似文献
17.
光谱分类识别一直是天文学家研究中的基础问题,也是LAMOST巡天计划的一项重要任务.从LAMOST发布的海量天体光谱数据库中选取F、G、K 3种型星光谱数据,采用深度学习模型进行分类识别研究和对比实验研究,解决原有方法对光谱分类可信度低的问题.实验结果证明:对于F、G、K 3种型星的分类精确度问题,深度学习方法明显优于原有其他分类方法. 相似文献
18.
基于镜像学习和复合二次距离的手写汉字识别 总被引:3,自引:0,他引:3
为解决手写汉字识别中的相似字混淆问题,提出了一种基于镜像学习和复合二次距离的识别算法,提高现有的二次分类器对相似汉字的鉴别能力。该算法为识别置信度较低的训练样本生成镜像虚拟样本,通过迭代训练来调整易混淆字符类别间的分类界面,并对二次分类器给出的候选字使用复合二次距离进行两两鉴别,以减少识别错误。在HCL 2000样本库上的实验表明,该算法能有效提高手写汉字识别的性能,测试集上的误识率下降了20%。 相似文献
19.
提出一种基于文字结构特征的神经网络手写汉字识别策略 ,根据所提取的文字笔画方向、基本轮廓和交叉点等特征 ,采用基于自组织神经网络的模式聚类该方法完成正规手写文字的识别 .该方法提取的笔画轮廓十分准确有效 ,对手写汉字的约束少 ,可识别的汉字数量大 ,在仿真实验中有效地识别了绝大多数手写汉字 相似文献