首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The purpose of this paper is to evaluate the limit γ(a) of the sequence , where a ∈ (0, + ∞ ).   相似文献   

2.
In this paper, some improved regularity criteria for the 3D magneto-micropolar fluid equations are established in Morrey–Campanato spaces. It is proved that if the velocity field satisfies
$\quad u\in L^{\frac{2}{1-r}}\left(0,T;\overset{.}{\mathcal{M}}_{p,\frac{3}{r}}( \mathbb{R}^{3})\right)\quad\text{with} \;r\in \left( 0,1\right)\;\text{or}\;u\in C\left(0,T;\overset{.}{\mathcal{M}}_{p,\frac{3}{r}}(\mathbb{R} ^{3})\right)$\quad u\in L^{\frac{2}{1-r}}\left(0,T;\overset{.}{\mathcal{M}}_{p,\frac{3}{r}}( \mathbb{R}^{3})\right)\quad\text{with} \;r\in \left( 0,1\right)\;\text{or}\;u\in C\left(0,T;\overset{.}{\mathcal{M}}_{p,\frac{3}{r}}(\mathbb{R} ^{3})\right)  相似文献   

3.
The purpose of this paper is threefold. First, we prove sharp singular affine Moser–Trudinger inequalities on both bounded and unbounded domains in \({\mathbb {R}}^{n}\). In particular, we will prove the following much sharper affine Moser–Trudinger inequality in the spirit of Lions (Rev Mat Iberoamericana 1(2):45–121, 1985) (see our Theorem 1.4): Let \(\alpha _{n}=n\left( \frac{n\pi ^{\frac{n}{2}}}{\Gamma (\frac{n}{2}+1)}\right) ^{\frac{1}{n-1}}\), \(0\le \beta <n\) and \(\tau >0\). Then there exists a constant \(C=C\left( n,\beta \right) >0\) such that for all \(0\le \alpha \le \left( 1-\frac{\beta }{n}\right) \alpha _{n}\) and \(u\in C_{0}^{\infty }\left( {\mathbb {R}}^{n}\right) \setminus \left\{ 0\right\} \) with the affine energy \(~{\mathcal {E}}_{n}\left( u\right) <1\), we have
$$\begin{aligned} {\displaystyle \int \nolimits _{{\mathbb {R}}^{n}}} \frac{\phi _{n,1}\left( \frac{2^{\frac{1}{n-1}}\alpha }{\left( 1+{\mathcal {E}}_{n}\left( u\right) ^{n}\right) ^{\frac{1}{n-1}}}\left| u\right| ^{\frac{n}{n-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( n,\beta \right) \frac{\left\| u\right\| _{n}^{n-\beta }}{\left| 1-{\mathcal {E}}_{n}\left( u\right) ^{n}\right| ^{1-\frac{\beta }{n}}}. \end{aligned}$$
Moreover, the constant \(\left( 1-\frac{\beta }{n}\right) \alpha _{n}\) is the best possible in the sense that there is no uniform constant \(C(n, \beta )\) independent of u in the above inequality when \(\alpha >\left( 1-\frac{\beta }{n}\right) \alpha _{n}\). Second, we establish the following improved Adams type inequality in the spirit of Lions (Theorem 1.8): Let \(0\le \beta <2m\) and \(\tau >0\). Then there exists a constant \(C=C\left( m,\beta ,\tau \right) >0\) such that
$$\begin{aligned} \underset{u\in W^{2,m}\left( {\mathbb {R}}^{2m}\right) , \int _{ {\mathbb {R}}^{2m}}\left| \Delta u\right| ^{m}+\tau \left| u\right| ^{m} \le 1}{\sup } {\displaystyle \int \nolimits _{{\mathbb {R}}^{2m}}} \frac{\phi _{2m,2}\left( \frac{2^{\frac{1}{m-1}}\alpha }{\left( 1+\left\| \Delta u\right\| _{m}^{m}\right) ^{\frac{1}{m-1}}}\left| u\right| ^{\frac{m}{m-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( m,\beta ,\tau \right) , \end{aligned}$$
for all \(0\le \alpha \le \left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\). When \(\alpha >\left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\), the supremum is infinite. In the above, we use
$$\begin{aligned} \phi _{p,q}(t)=e^{t}- {\displaystyle \sum \limits _{j=0}^{j_{\frac{p}{q}}-2}} \frac{t^{j}}{j!},\,\,\,j_{\frac{p}{q}}=\min \left\{ j\in {\mathbb {N}} :j\ge \frac{p}{q}\right\} \ge \frac{p}{q}. \end{aligned}$$
The main difficulties of proving the above results are that the symmetrization method does not work. Therefore, our main ideas are to develop a rearrangement-free argument in the spirit of Lam and Lu (J Differ Equ 255(3):298–325, 2013; Adv Math 231(6): 3259–3287, 2012), Lam et al. (Nonlinear Anal 95: 77–92, 2014) to establish such theorems. Third, as an application, we will study the existence of weak solutions to the biharmonic equation
$$\begin{aligned} \left\{ \begin{array}{l} \Delta ^{2}u+V(x)u=f(x,u)\text { in }{\mathbb {R}}^{4}\\ u\in H^{2}\left( {\mathbb {R}}^{4}\right) ,~u\ge 0 \end{array} \right. , \end{aligned}$$
where the nonlinearity f has the critical exponential growth.
  相似文献   

4.
Suppose that $\[{x_1},{x_2}, \cdots \]$ are i i d. random variables on a probability space $\[(\Omega ,F,P)\]$ and $\[{x_1}\]$ is normally distributed with mean $\[\theta \]$ and variance $\[{\sigma ^2}\]$, both of which are unknown. Given $\[{\theta _0}\]$ and $\[0 < \alpha < 1\]$, we propose a concrete stopping rule T w. r. e.the $\[\{ {x_n},n \ge 1\} \]$ such that $$\[{P_{\theta \sigma }}(T < \infty ) \le \alpha \begin{array}{*{20}{c}} {for}&{\begin{array}{*{20}{c}} {all}&{\theta \le {\theta _0},\sigma > 0,} \end{array}} \end{array}\]$$ $$\[{P_{\theta \sigma }}(T < \infty ) = 1\begin{array}{*{20}{c}} {for}&{\begin{array}{*{20}{c}} {all}&{\theta > {\theta _0},\sigma > 0,} \end{array}} \end{array}\]$$ $$\[\mathop {\lim }\limits_{\theta \downarrow {\theta _0}} {(\theta - {\theta _0})^2}{({\ln _2}\frac{1}{{\theta - {\theta _0}}})^{ - 1}}{E_{\theta \sigma }}T = 2{\sigma ^2}{P_{{\theta _0}\sigma }}(T = \infty )\]$$ where $\[{\ln _2}x = \ln (\ln x)\]$.  相似文献   

5.
Inequalities are conjectured for the Jacobi polynomials and their largest zeros. Special attention is given to the cases β = α − 1 and β = α.   相似文献   

6.
Let X 1, X 2, ... be i.i.d. random variables. The sample range is R n = max {X i , 1 ≤ i ≤ n} − min {X i , 1 ≤ i ≤ n}. If for a non-degenerate distribution G and some sequences (α k ), (β k ) then we have
and
almost surely for any continuity point x of G and for any bounded Lipschitz function f: R → R.   相似文献   

7.
In this paper, we investigate blow up criteria for the local smooth solutions to the 3D incompressible nematic liquid crystal flows via the components of the gradient velocity field \(\nabla u\) and the gradient orientation field \(\nabla d\). More precisely, we show that \(0< T_{ \ast}<+\infty\) is the maximal time interval if and only if
$$\begin{aligned} & \int_{0}^{T_{\ast}} \bigl\Vert \Vert \partial_{i}u\Vert _{L_{x_{i}} ^{\gamma}} \bigr\Vert _{L_{x_{j}x_{k}}^{\alpha}}^{\beta}+ \|\nabla d\| _{L^{\infty}}^{\frac{8}{3}}\mathrm{d}t=\infty, \\ &\quad\text{ with } \frac{2}{\alpha}+\frac{2}{\beta}\leq\frac{3\alpha +2}{4\alpha}, \text{ and } 1\leq\gamma\leq\alpha,2< \alpha\leq+\infty, \end{aligned}$$
or
$$\begin{aligned} \int_{0}^{T_{\ast}}\|\partial_{3}u_{3} \|^{\beta}_{L^{\alpha}}+\| \nabla d\|^{\frac{8}{3}}_{L^{\infty}} \mathrm{d}t=\infty,\quad\text{with } \frac{3}{\alpha}+\frac{2}{\beta}\leq \frac{3(\alpha+2)}{4 \alpha}, \text{ and } 2< \alpha\leq\infty, \end{aligned}$$
where \(i,j,k\in\{1,2,3\}\), \(i\neq j\), \(i\neq k\), and \(j\neq k\).
  相似文献   

8.
Suppose that X is a complex Banach space with the norm ‖·‖ and n is a positive integer with dim Xn ⩾ 2. In this paper, we consider the generalized Roper-Suffridge extension operator $ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f) $ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f) on the domain $ \Omega _{p_1 ,p_2 , \ldots ,p_{n + 1} } $ \Omega _{p_1 ,p_2 , \ldots ,p_{n + 1} } defined by
$ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f)(x) = {*{20}c} {\sum\limits_{j = 1}^n {\left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)} ^{\beta _j } (f'(x_1^* (x)))^{\gamma _j } x_1^* (x)x_j } \\ { + \left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)^{\beta _{n + 1} } (f'(x_1^* (x)))^{\gamma _{n + 1} } \left( {x - \sum\limits_{j = 1}^n {x_1^* (x)x_j } } \right)} \\ $ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f)(x) = \begin{array}{*{20}c} {\sum\limits_{j = 1}^n {\left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)} ^{\beta _j } (f'(x_1^* (x)))^{\gamma _j } x_1^* (x)x_j } \\ { + \left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)^{\beta _{n + 1} } (f'(x_1^* (x)))^{\gamma _{n + 1} } \left( {x - \sum\limits_{j = 1}^n {x_1^* (x)x_j } } \right)} \\ \end{array}   相似文献   

9.
Let Ω be a bounded domain in , we prove the singular Moser-Trudinger embedding: if and only if where and . We will also study the corresponding critical exponent problem.  相似文献   

10.
Let {A, B} and {C, D} be diagonalizable pairs of order n, i.e., there exist invertible matrices P, Q and X, Ysuchthat A = P∧Q, B = PΩQ, C =XГY, D= X△Y, where
∧ = diag(α1, α2, …, αn), Ω= diag(βl, β2, …βn),
Г=diag(γ1,γ2,…,γn), △=diag(δl,δ2,…,δn).
Let ρ((α,β), (γ,δ))=|αδ-βγ|/√|α|^2+|β|^2√|γ|^2+|δ|^2.In this paper, it will be proved that there is a permutation τ of {1,2,... ,n} such that
n∑i=1[ρ((αi,βi),(γτ(i),δτ(i)))]^2≤n[1-1/κ^2(Y)κ^2(Q)(1-d2F(Z,W)/n)],
where κ(Y) = ||Y||2||Y^-1||2,Z= (A,B),W= (C, D) and dF(Z,W) = 1/√2||Pz* -Pw*||F.  相似文献   

11.
T. Erdelyi, A.P. Magnus and P. Nevai conjectured that for the orthonormal Jacobi polynomials satisfy the inequality
[Erdelyi et al., Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials. SIAM J. Math. Anal., 25 (1994), 602-614.]. Here we will confirm this conjecture in the ultraspherical case even in a stronger form by giving very explicit upper bounds. We also show that
for a certain choice of such that the interval contains all the zeros of Slightly weaker bounds are given for polynomials of odd degree.  相似文献   

12.
For fixed generalized reflection matrix P, i.e. P T  = P, P 2 = I, then matrix X is said to be generalized bisymmetric, if X = X T  = PXP. In this paper, an iterative method is constructed to find the generalized bisymmetric solutions of the matrix equation A 1 X 1 B 1 + A 2 X 2 B 2 + ⋯ + A l X l B l  = C where [X 1,X 2, ⋯ ,X l ] is real matrices group. By this iterative method, the solvability of the matrix equation can be judged automatically. When the matrix equation is consistent, for any initial generalized bisymmetric matrix group , a generalized bisymmetric solution group can be obtained within finite iteration steps in the absence of roundoff errors, and the least norm generalized bisymmetric solution group can be obtained by choosing a special kind of initial generalized bisymmetric matrix group. In addition, the optimal approximation generalized bisymmetric solution group to a given generalized bisymmetric matrix group in Frobenius norm can be obtained by finding the least norm generalized bisymmetric solution group of the new matrix equation , where . Given numerical examples show that the algorithm is efficient. Research supported by: (1) the National Natural Science Foundation of China (10571047) and (10771058), (2) Natural Science Foundation of Hunan Province (06JJ2053), (3) Scientific Research Fund of Hunan Provincial Education Department(06A017).  相似文献   

13.
In this paper, we are concerned with the existence criteria for positive solutions of the following nonlinear arbitrary order fractional differential equations with deviating argument
$\left \{{l@{\quad}l}D_{0^+}^{\alpha}u(t)+h(t)f(u(\theta(t)))=0, & t\in ( 0,1 ),\ n-1<\alpha\leq n,\\[3pt]u^{(i)}(0)=0, & i=0,1,2,\ldots,n-2,\\[3pt][D_{0^+}^{\beta} u(t)]_{t=1}=0, & 1\leq\beta\leq n-2, \right .$\left \{\begin{array}{l@{\quad}l}D_{0^+}^{\alpha}u(t)+h(t)f(u(\theta(t)))=0, & t\in ( 0,1 ),\ n-1<\alpha\leq n,\\[3pt]u^{(i)}(0)=0, & i=0,1,2,\ldots,n-2,\\[3pt][D_{0^+}^{\beta} u(t)]_{t=1}=0, & 1\leq\beta\leq n-2,\end{array} \right .  相似文献   

14.
In this paper, we consider a linearly elastic shell, i.e. a three-dimensional linearly elastic body with a small thickness denoted by 2ε, which is clamped along its part of the lateral boundary and subjected to the regular loads. In the linear case, one can use the two-dimensional models of Ciarlet or Koiter to calculate the displacement for the shell. Some error estimates between the approximate solution of these models and the three-dimensional displacement vector field of a flexural or membrane shell have been obtained. Here we give a new model for a linear and nonlinear shell, prove that there exists a unique solution U of the two-dimensional variational problem and construct a three-dimensional approximate solutions UKT(x,ξ) in terms of U: We also provide the error estimates between our model and the three-dimensional displacement vector field :‖u-UKT‖1,Ω≤C∈r,r=3/2, an elliptic membrane, r = 1/2, a general membrane, where C is a constant dependent only upon the data‖u‖3,Ω,‖UKT‖3,Ω,θ.  相似文献   

15.
In this paper, we consider the initial value problem of the 2D dissipative quasi-geostrophic equations. Existence and uniqueness of the solution global in time are proved in the homogenous Besov space Bp,∞ s p with small data when 1 /2<α≤1,2/2α-1< p<∞,sp=2/p-(2α-1). Our proof is based on a new characterization of the homogenous Besov space and Kato's method.  相似文献   

16.
We prove certain properties of solutions of the equation
in a domain ω ⊂R 3, which are similar to the properties of harmonic functions. By using the potential method, we investigate basic boundary-value problems for this equation. Lvov University, Lvov. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 51, No. 1, pp. 48–59, January, 1999.  相似文献   

17.
  We obtain a new sharp inequality for the local norms of functions x ∈ L ∞, ∞ r (R), namely,
where φ r is the perfect Euler spline, on the segment [a, b] of monotonicity of x for q ≥ 1 and for arbitrary q > 0 in the case where r = 2 or r = 3. As a corollary, we prove the well-known Ligun inequality for periodic functions x ∈ L r , namely,
for q ∈ [0, 1) in the case where r = 2 or r = 3. Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 60, No. 10, pp. 1338–1349, October, 2008.  相似文献   

18.
In this note we prove a logarithmically improved regularity criterion in terms of the Besov space norm for the Navier–Stokes equations. The result shows that if a mild solution u satisfies ${\int_{0}^{T}\frac{\|u (t,\cdot)\|_{{\dot{B}}_{\infty,\infty}^{-r}}^{\frac{2}{1-r}}}{1+\ln(e+\| u(t,\cdot)\|_{H^{s}})}\text{d}t < \infty}$ for some 0?≤ r?<?1 and ${s\geq\frac{n}{2}-1}$ , then u is regular at t?=?T.  相似文献   

19.
We study the global in time existence of small classical solutions to the nonlinear Schrödinger equation with quadratic interactions of derivative type in two space dimensions $\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&;t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&;x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)$ where the quadratic nonlinearity has the form ${\mathcal{N}( \nabla u,\nabla v) =\sum_{k,l=1,2}\lambda _{kl} (\partial _{k}u) ( \partial _{l}v) }We study the global in time existence of small classical solutions to the nonlinear Schr?dinger equation with quadratic interactions of derivative type in two space dimensions
$\left\{{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \right.\quad\quad\quad\quad\quad\quad (0.1)$\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)  相似文献   

20.
In this work, we investigate the existence and the uniqueness of solutions for the nonlocal elliptic system involving a singular nonlinearity as follows: $$ \left\{\begin{array}{ll} (-\Delta_p)^su = a(x)|u|^{q-2}u +\frac{1-\alpha}{2-\alpha-\beta} c(x)|u|^{-\alpha}|v|^{1-\beta}, \quad \text{in }\Omega,\ (-\Delta_p)^s v= b(x)|v|^{q-2}v +\frac{1-\beta}{2-\alpha-\beta} c(x)|u|^{1-\alpha}|v|^{-\beta}, \quad \text{in }\Omega,\ u=v = 0 ,\;\;\mbox{ in }\,\mathbb{R}^N\setminus\Omega, \end{array} \right. $$ where $\Omega $ is a bounded domain in $\mathbb{R}^{n}$ with smooth boundary, $0<\alpha <1,$ $0<\beta <1,$ $2-\alpha -\beta 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号