首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this paper we obtain some upper bounds for the b-chromatic number of K1,s-free graphs, graphs with given minimum clique partition and bipartite graphs. These bounds are given in terms of either the clique number or the chromatic number of a graph or the biclique number for a bipartite graph. We show that all the bounds are tight.  相似文献   

3.
In this article we first give an upper bound for the chromatic number of a graph in terms of its degrees. This bound generalizes and modifies the bound given in 11 . Next, we obtain an upper bound of the order of magnitude for the coloring number of a graph with small K2,t (as subgraph), where n is the order of the graph. Finally, we give some bounds for chromatic number in terms of girth and book size. These bounds improve the best known bound, in terms of order and girth, for the chromatic number of a graph when its girth is an even integer. © 2008 Wiley Periodicals, Inc. J Graph Theory 58:110–122, 2008  相似文献   

4.
It was conjectured in 1981 by the third author that if a graph G does not contain more than t pairwise edge-disjoint triangles, then there exists a set of at most 2t edges that shares an edge with each triangle of G. In this paper, we prove this conjecture for odd-wheel-free graphs and for ‘triangle-3-colorable’ graphs, where the latter property means that the edges of the graph can be colored with three colors in such a way that each triangle receives three distinct colors on its edges. Among the consequences we obtain that the conjecture holds for every graph with chromatic number at most four. Also, two subclasses of K 4-free graphs are identified, in which the maximum number of pairwise edge-disjoint triangles is equal to the minimum number of edges covering all triangles. In addition, we prove that the recognition problem of triangle-3-colorable graphs is intractable.  相似文献   

5.
A class of graphs χ is said to be χ-bounded, with χ-binding function f, if for all G ? Γ, χ (G) ≦ f (ω(G)), where χ(G) is the chromatic number of G and ω(G) is the clique number of G. It has been conjectured that for every tree T, the class of graphs that do not induce T is χ-bounded. We show that this is true in the case where T is a tree of radius two.  相似文献   

6.
The local chromatic number of a graph was introduced in [14]. It is in between the chromatic and fractional chromatic numbers. This motivates the study of the local chromatic number of graphs for which these quantities are far apart. Such graphs include Kneser graphs, their vertex color-critical subgraphs, the Schrijver (or stable Kneser) graphs; Mycielski graphs, and their generalizations; and Borsuk graphs. We give more or less tight bounds for the local chromatic number of many of these graphs. We use an old topological result of Ky Fan [17] which generalizes the Borsuk–Ulam theorem. It implies the existence of a multicolored copy of the complete bipartite graph Kt/2⌉,⌊t/2⌋ in every proper coloring of many graphs whose chromatic number t is determined via a topological argument. (This was in particular noted for Kneser graphs by Ky Fan [18].) This yields a lower bound of ⌈t/2⌉ + 1 for the local chromatic number of these graphs. We show this bound to be tight or almost tight in many cases. As another consequence of the above we prove that the graphs considered here have equal circular and ordinary chromatic numbers if the latter is even. This partially proves a conjecture of Johnson, Holroyd, and Stahl and was independently attained by F. Meunier [42]. We also show that odd chromatic Schrijver graphs behave differently, their circular chromatic number can be arbitrarily close to the other extreme. * Research partially supported by the Hungarian Foundation for Scientific Research Grant (OTKA) Nos. T037846, T046376, AT048826, and NK62321. † Research partially supported by the NSERC grant 611470 and the Hungarian Foundation for Scientific Research Grant (OTKA) Nos. T037846, T046234, AT048826, and NK62321.  相似文献   

7.
We investigate the local chromatic number of shift graphs and prove that it is close to their chromatic number. This implies that the gap between the directed local chromatic number of an oriented graph and the local chromatic number of the underlying undirected graph can be arbitrarily large. We also investigate the minimum possible directed local chromatic number of oriented versions of “topologically t‐chromatic” graphs. We show that this minimum for large enough t‐chromatic Schrijver graphs and t‐chromatic generalized Mycielski graphs of appropriate parameters is ?t/4?+1. © 2010 Wiley Periodicals, Inc. J Graph Theory 66: 65‐82, 2010  相似文献   

8.
It is well known that almost every graph in the random space G(n, p) has chromatic number of order O(np/log(np)), but it is not clear how we can recognize such graphs without eventually computing the chromatic numbers, which is NP‐hard. The first goal of this article is to show that the above‐mentioned upper bound on the chromatic number can be guaranteed by simple degree conditions, which are satisfied by G(n, p) almost surely for most values of p. It turns out that the same conditions imply a similar bound for the choice number of a graph. The proof implies a polynomial coloring algorithm for the case p is not too small. Our result has several applications. It can be used to determine the right order of magnitude of the choice number of random graphs and hypergraphs. It also leads to a general bound on the choice number of locally sparse graphs and to several interesting facts about finite fields. © 1999 John Wiley & Sons, Inc. J Graph Theory 31: 201–226, 1999  相似文献   

9.
An Erratum has been published for this article in Journal of Graph Theory 48: 329–330, 2005 . Let M be a set of positive integers. The distance graph generated by M, denoted by G(Z, M), has the set Z of all integers as the vertex set, and edges ij whenever |i?j| ∈ M. We investigate the fractional chromatic number and the circular chromatic number for distance graphs, and discuss their close connections with some number theory problems. In particular, we determine the fractional chromatic number and the circular chromatic number for all distance graphs G(Z, M) with clique size at least |M|, except for one case of such graphs. For the exceptional case, a lower bound for the fractional chromatic number and an upper bound for the circular chromatic number are presented; these bounds are sharp enough to determine the chromatic number for such graphs. Our results confirm a conjecture of Rabinowitz and Proulx 22 on the density of integral sets with missing differences, and generalize some known results on the circular chromatic number of distance graphs and the parameter involved in the Wills' conjecture 26 (also known as the “lonely runner conjecture” 1 ). © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 129–146, 2004  相似文献   

10.
In this article, we consider the circular chromatic number χc(G) of series‐parallel graphs G. It is well known that series‐parallel graphs have chromatic number at most 3. Hence, their circular chromatic numbers are at most 3. If a series‐parallel graph G contains a triangle, then both the chromatic number and the circular chromatic number of G are indeed equal to 3. We shall show that if a series‐parallel graph G has girth at least 2 ⌊(3k − 1)/2⌋, then χc(G) ≤ 4k/(2k − 1). The special case k = 2 of this result implies that a triangle free series‐parallel graph G has circular chromatic number at most 8/3. Therefore, the circular chromatic number of a series‐parallel graph (and of a K4‐minor free graph) is either 3 or at most 8/3. This is in sharp contrast to recent results of Moser [5] and Zhu [14], which imply that the circular chromatic number of K5‐minor free graphs are precisely all rational numbers in the interval [2, 4]. We shall also construct examples to demonstrate the sharpness of the bound given in this article. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 14–24, 2000  相似文献   

11.
A harmonious coloring of a simple graph G is a proper vertex coloring such that each pair of colors appears together on at most one edge. The harmonious chromatic number h(G) is the least number of colors in such a coloring. We obtain a new upper bound for the harmonious chromatic number of general graphs. © 1998 John Wiley & Sons, Inc. J Graph Theory 29: 257–261, 1998  相似文献   

12.
In this article we give examples of a triangle-free graph on 22 vertices with chromatic number 5 and a K4-free graph on 11 vertices with chromatic number 5. We very briefly describe the computer searches demonstrating that these are the smallest possible such graphs. All 5-critical graphs on 9 vertices are exhibited. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
《Journal of Graph Theory》2018,88(4):606-630
Motivated by an old conjecture of P. Erdős and V. Neumann‐Lara, our aim is to investigate digraphs with uncountable dichromatic number and orientations of undirected graphs with uncountable chromatic number. A graph has uncountable chromatic number if its vertices cannot be covered by countably many independent sets, and a digraph has uncountable dichromatic number if its vertices cannot be covered by countably many acyclic sets. We prove that, consistently, there are digraphs with uncountable dichromatic number and arbitrarily large digirth; this is in surprising contrast with the undirected case: any graph with uncountable chromatic number contains a 4‐cycle. Next, we prove that several well‐known graphs (uncountable complete graphs, certain comparability graphs, and shift graphs) admit orientations with uncountable dichromatic number in ZFC. However, we show that the statement “every graph G of size and chromatic number ω1 has an orientation D with uncountable dichromatic number” is independent of ZFC. We end the article with several open problems.  相似文献   

14.
A graphG ischromatically k-connected if every vertex cutset induces a subgraph with chromatic number at leastk. This concept arose in some work, involving the third author, on Ramsey Theory. (For the reference, see the text.) Here we begin the study of chromatic connectivity for its own sake. We show thatG is chromaticallyk-connected iff every homomorphic image of it isk-connected. IfG has no triangles then it is at most chromatically 1-connected, but we prove that the Kneser graphs provide examples ofK 4-free graphs with arbitrarily large chromatic connectivity. We also verify thatK 4-free planar graphs are at most chromatically 2-connected.This work was supported by grants from NSERC of Canada.  相似文献   

15.
We introduce in this paper the notion of the chromatic number of an oriented graph G (that is of an antisymmetric directed graph) defined as the minimum order of an oriented graph H such that G admits a homomorphism to H. We study the chromatic number of oriented k-trees and of oriented graphs with bounded degree. We show that there exist oriented k-trees with chromatic number at least 2k+1 - 1 and that every oriented k-tree has chromatic number at most (k + 1) × 2k. For 2-trees and 3-trees we decrease these upper bounds respectively to 7 and 16 and show that these new bounds are tight. As a particular case, we obtain that oriented outerplanar graphs have chromatic number at most 7 and that this bound is tight too. We then show that every oriented graph with maximum degree k has chromatic number at most (2k - 1) × 22k-2. For oriented graphs with maximum degree 2 we decrease this bound to 5 and show that this new bound is tight. For oriented graphs with maximum degree 3 we decrease this bound to 16 and conjecture that there exists no such connected graph with chromatic number greater than 7. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 191–205, 1997  相似文献   

16.
For each n, we obtain a (polynomial) bound on the chromatic number in terms of the maximum size of a complete subgraph, for graphs not having n · K2 as an induced subgraph.  相似文献   

17.
Andrew Suk 《Combinatorica》2014,34(4):487-505
A class of graphs G is χ-bounded if the chromatic number of the graphs in G is bounded by some function of their clique number. We show that the class of intersection graphs of simple families of x-monotone curves in the plane intersecting a vertical line is χ-bounded. As a corollary, we show that the class of intersection graphs of rays in the plane is χ-bounded, and the class of intersection graphs of unit segments in the plane is χ-bounded.  相似文献   

18.
Let H be a family of connected graphs. A graph G is said to be H-free if G is H-free for every graph H in H. In Aldred et al. (2010) [1], it was pointed that there is a family of connected graphs H not containing any induced subgraph of the claw having the property that the set of H-free connected graphs containing a claw is finite, provided also that those graphs have minimum degree at least 2 and maximum degree at least 3. In the same work, it was also asked whether there are other families with the same property. In this paper, we answer this question by solving a wider problem. We consider not only claw-free graphs but the more general class of star-free graphs. Concretely, given t≥3, we characterize all the graph families H such that every large enough H-free connected graph is K1,t-free. Additionally, for the case t=3, we show the families that one gets when adding the condition ∣H∣≤k for each positive integer k.  相似文献   

19.
Concise proofs for adjacent vertex-distinguishing total colorings   总被引:3,自引:0,他引:3  
Let G=(V,E) be a graph and f:(VE)→[k] be a proper total k-coloring of G. We say that f is an adjacent vertex- distinguishing total coloring if for any two adjacent vertices, the set of colors appearing on the vertex and incident edges are different. We call the smallest k for which such a coloring of G exists the adjacent vertex-distinguishing total chromatic number, and denote it by χat(G). Here we provide short proofs for an upper bound on the adjacent vertex-distinguishing total chromatic number of graphs of maximum degree three, and the exact values of χat(G) when G is a complete graph or a cycle.  相似文献   

20.
A graph is total domination edge-critical if the addition of any edge decreases the total domination number, while a graph with minimum degree at least two is total domination vertex-critical if the removal of any vertex decreases the total domination number. A 3 t EC graph is a total domination edge-critical graph with total domination number 3 and a 3 t VC graph is a total domination vertex-critical graph with total domination number 3. A graph G is factor-critical if Gv has a perfect matching for every vertex v in G. In this paper, we show that every 3 t EC graph of even order has a perfect matching, while every 3 t EC graph of odd order with no cut-vertex is factor-critical. We also show that every 3 t VC graph of even order that is K 1,7-free has a perfect matching, while every 3 t VC graph of odd order that is K 1,6-free is factor-critical. We show that these results are tight in the sense that there exist 3 t VC graphs of even order with no perfect matching that are K 1,8-free and 3 t VC graphs of odd order that are K 1,7-free but not factor-critical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号