首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The eccentric distance sum is a novel topological index that offers a vast potential for structure activity/property relationships. For a graph G, it is defined as ξd(G)=vVε(v)D(v), where ε(v) is the eccentricity of the vertex v and D(v)=uV(G)d(u,v) is the sum of all distances from the vertex v. Motivated by [G. Yu, L. Feng, A. Ili?, On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal. Appl. 375 (2011) 934-944], in this paper we characterize the extremal trees and graphs with maximal eccentric distance sum. Various lower and upper bounds for the eccentric distance sum in terms of other graph invariants including the Wiener index, the degree distance, eccentric connectivity index, independence number, connectivity, matching number, chromatic number and clique number are established. In addition, we present explicit formulae for the values of eccentric distance sum for the Cartesian product, applied to some graphs of chemical interest (like nanotubes and nanotori).  相似文献   

2.
For a poset P=(X,≤), the upper bound graph (UB-graph) of P is the graph U=(X,EU), where uvEU if and only if uv and there exists mX such that u,vm. For a graph G, the distance two graph DS2(G) is the graph with vertex set V(DS2(G))=V(G) and u,vV(DS2(G)) are adjacent if and only if dG(u,v)=2. In this paper, we deal with distance two graphs of upper bound graphs. We obtain a characterization of distance two graphs of split upper bound graphs.  相似文献   

3.
A shortest path connecting two vertices u and v is called a u-v geodesic. The distance between u and v in a graph G, denoted by dG(u,v), is the number of edges in a u-v geodesic. A graph G with n vertices is panconnected if, for each pair of vertices u,vV(G) and for each integer k with dG(u,v)?k?n-1, there is a path of length k in G that connects u and v. A graph G with n vertices is geodesic-pancyclic if, for each pair of vertices u,vV(G), every u-v geodesic lies on every cycle of length k satisfying max{2dG(u,v),3}?k?n. In this paper, we study sufficient conditions of geodesic-pancyclic graphs. In particular, we show that most of the known sufficient conditions of panconnected graphs can be applied to geodesic-pancyclic graphs.  相似文献   

4.
The Wiener index of a graph G is defined as W(G)=∑ u,v d G (u,v), where d G (u,v) is the distance between u and v in G and the sum goes over all the pairs of vertices. In this paper, we first present the 6 graphs with the first to the sixth smallest Wiener index among all graphs with n vertices and k cut edges and containing a complete subgraph of order nk; and then we construct a graph with its Wiener index no less than some integer among all graphs with n vertices and k cut edges.  相似文献   

5.
For a simple graph G let NG(u) be the (open) neighborhood of vertex uV(G). Then G is neighborhood anti-Sperner (NAS) if for every u there is a vV(G)?{u} with NG(u)⊆NG(v). And a graph H is neighborhood distinct (ND) if every neighborhood is distinct, i.e., if NH(u)≠NH(v) when uv, for all u and vV(H).In Porter and Yucas [T.D. Porter, J.L. Yucas. Graphs whose vertex-neighborhoods are anti-sperner, Bulletin of the Institute of Combinatorics and its Applications 44 (2005) 69-77] a characterization of regular NAS graphs was given: ‘each regular NAS graph can be obtained from a host graph by replacing vertices by null graphs of appropriate sizes, and then joining these null graphs in a prescribed manner’. We extend this characterization to all NAS graphs, and give algorithms to construct all NAS graphs from host ND graphs. Then we find and classify all connected r-regular NAS graphs for r=0,1,…,6.  相似文献   

6.
Let G be a simple graph with n vertices. For any v ? V(G){v \in V(G)} , let N(v)={u ? V(G): uv ? E(G)}{N(v)=\{u \in V(G): uv \in E(G)\}} , NC(G) = min{|N(u) èN(v)|: u, v ? V(G){NC(G)= \min \{|N(u) \cup N(v)|: u, v \in V(G)} and uv \not ? E(G)}{uv \not \in E(G)\}} , and NC2(G) = min{|N(u) èN(v)|: u, v ? V(G){NC_2(G)= \min\{|N(u) \cup N(v)|: u, v \in V(G)} and u and v has distance 2 in E(G)}. Let l ≥ 1 be an integer. A graph G on nl vertices is [l, n]-pan-connected if for any u, v ? V(G){u, v \in V(G)} , and any integer m with lmn, G has a (u, v)-path of length m. In 1998, Wei and Zhu (Graphs Combinatorics 14:263–274, 1998) proved that for a three-connected graph on n ≥ 7 vertices, if NC(G) ≥ n − δ(G) + 1, then G is [6, n]-pan-connected. They conjectured that such graphs should be [5, n]-pan-connected. In this paper, we prove that for a three-connected graph on n ≥ 7 vertices, if NC 2(G) ≥ n − δ(G) + 1, then G is [5, n]-pan-connected. Consequently, the conjecture of Wei and Zhu is proved as NC 2(G) ≥ NC(G). Furthermore, we show that the lower bound is best possible and characterize all 2-connected graphs with NC 2(G) ≥ n − δ(G) + 1 which are not [4, n]-pan-connected.  相似文献   

7.
The restricted connectivity κ(G) of a connected graph G is defined as the minimum cardinality of a vertex-cut over all vertex-cuts X such that no vertex u has all its neighbors in X; the superconnectivity κ1(G) is defined similarly, this time considering only vertices u in G-X, hence κ1(G)?κ(G). The minimum edge-degree of G is ξ(G)=min{d(u)+d(v)-2:uvE(G)}, d(u) standing for the degree of a vertex u. In this paper, several sufficient conditions yielding κ1(G)?ξ(G) are given, improving a previous related result by Fiol et al. [Short paths and connectivity in graphs and digraphs, Ars Combin. 29B (1990) 17-31] and guaranteeing κ1(G)=κ(G)=ξ(G) under some additional constraints.  相似文献   

8.
Consider a simple random walk on a connected graph G=(V, E). Let C(u, v) be the expected time taken for the walk starting at vertex u to reach vertex v and then go back to u again, i.e., the commute time for u and v, and let C(G)=maxu, vVC(u, v). Further, let 𝒢(n, m) be the family of connected graphs on n vertices with m edges, , and let 𝒢(n)=∪m𝒢(n, m) be the family of all connected n‐vertex graphs. It is proved that if G∈(n, m) is such that C(G)=maxH∈𝒢(n, m)C(H) then G is either a lollipop graph or a so‐called double‐handled lollipop graph. It is further shown, using this result, that if C(G)=maxH∈𝒢(n)C(H) then G is the full lollipop graph or a full double‐handled lollipop graph with [(2n−1)/3] vertices in the clique unless n≤9 in which case G is the n‐path. ©2000 John Wiley & Sons, Inc. Random Struct. Alg., 16, 131–142, 2000  相似文献   

9.
Let G be a simple connected graph with the vertex set V(G). The eccentric distance sum of G is defined as ξd(G)=vV(G)ε(v)DG(v), where ε(v) is the eccentricity of the vertex v and DG(v)=uV(G)d(u,v) is the sum of all distances from the vertex v. In this paper we characterize the extremal unicyclic graphs among n-vertex unicyclic graphs with given girth having the minimal and second minimal eccentric distance sum. In addition, we characterize the extremal trees with given diameter and minimal eccentric distance sum.  相似文献   

10.
The general Randi? index of a molecular graph G is the sum of [d(u)d(v)]α over all edges uvG, where d(v) denotes the degree of the vertex v in G and α is an arbitrary number. When α=−1/2, it is called the Randi? index. Delorme et al. stated a best possible lower bound on the Randi? index of a triangle-free graph with given minimum degree. Their false proof was pointed out by Liu et al. In this note, we derive some sharp bounds on the general Randi? index which implies their lower bound for triangle-free graphs of order n with maximum degree at most n/4, and also prove it for triangle-free graphs with small minimum degree.  相似文献   

11.
Given a graph G=(V,E) and sets L(v) of allowed colors for each vV, a list coloring of G is an assignment of colors φ(v) to the vertices, such that φ(v)∈L(v) for all vV and φ(u)≠φ(v) for all uvE. The choice number of G is the smallest natural number k admitting a list coloring for G whenever |L(v)|≥k holds for every vertex v. This concept has an interesting variant, called Hall number, where an obvious necessary condition for colorability is put as a restriction on the lists L(v). (On complete graphs, this condition is equivalent to the well-known one in Hall’s Marriage Theorem.) We prove that vertex deletion or edge insertion in a graph of order n>3 may make the Hall number decrease by as much as n−3. This estimate is tight for all n. Tightness is deduced from the upper bound that every graph of order n has Hall number at most n−2. We also characterize the cases of equality; for n≥6 these are precisely the graphs whose complements are K2∪(n−2)K1, P4∪(n−4)K1, and C5∪(n−5)K1. Our results completely solve a problem raised by Hilton, Johnson and Wantland [A.J.W. Hilton, P.D. Johnson, Jr., E. B. Wantland, The Hall number of a simple graph, Congr. Numer. 121 (1996), 161-182, Problem 7] in terms of the number of vertices, and strongly improve some estimates due to Hilton and Johnson [A.J.W. Hilton, P.D. Johnson, Jr., The Hall number, the Hall index, and the total Hall number of a graph, Discrete Appl. Math. 94 (1999), 227-245] as a function of maximum degree.  相似文献   

12.
Let G = (VE) be a connected graph. The distance between two vertices u, v ∈ V, denoted by d(uv), is the length of a shortest u − v path in G. The distance between a vertex v ∈ V and a subset P ⊂ V is defined as , and it is denoted by d(vP). An ordered partition {P1P2, … , Pt} of vertices of a graph G, is a resolving partition of G, if all the distance vectors (d(vP1), d(vP2), … , d(vPt)) are different. The partition dimension of G, denoted by pd(G), is the minimum number of sets in any resolving partition of G. In this article we study the partition dimension of Cartesian product graphs. More precisely, we show that for all pairs of connected graphs G, H, pd(G × H) ? pd(G) + pd(H) and pd(G × H) ? pd(G) + dim(H), where dim(H) denotes the metric dimension of H. Consequently, we show that pd(G × H) ? dim(G) + dim(H) + 1.  相似文献   

13.
 Let G be a (V,E) graph of order p≥2. The double vertex graph U 2 (G) is the graph whose vertex set consists of all 2-subsets of V such that two distinct vertices {x,y} and {u,v} are adjacent if and only if |{x,y}∩{u,v}|=1 and if x=u, then y and v are adjacent in G. For this class of graphs we discuss the regularity, eulerian, hamiltonian, and bipartite properties of these graphs. A generalization of this concept is n-tuple vertex graphs, defined in a manner similar to double vertex graphs. We also review several recent results for n-tuple vertex graphs. Received: October, 2001 Final version received: September 20, 2002 Dedicated to Frank Harary on the occasion of his Eightieth Birthday and the Manila International Conference held in his honor  相似文献   

14.
Bounds on the Distance Two-Domination Number of a Graph   总被引:1,自引:0,他引:1  
 For a graph G = (V, E), a subset DV(G) is said to be distance two-dominating set in G if for each vertex uVD, there exists a vertex vD such that d(u,v)≤2. The minimum cardinality of a distance two-dominating set in G is called a distance two-domination number and is denoted by γ2(G). In this note we obtain various upper bounds for γ2(G) and characterize the classes of graphs attaining these bounds. Received: May 31, 1999 Final version received: July 13, 2000  相似文献   

15.
A graph G is hamiltonian connected if there exists a hamiltonian path joining any two distinct nodes of G. Two hamiltonian paths and of G from u to v are independent if u = u 1 = v 1, v = u v(G) = v v(G) , and u i ≠ v i for every 1 < iv(G). A set of hamiltonian paths, {P 1, P 2, . . . , P k }, of G from u to v are mutually independent if any two different hamiltonian paths are independent from u to v. A graph is k mutually independent hamiltonian connected if for any two distinct nodes u and v, there are k mutually independent hamiltonian paths from u to v. The mutually independent hamiltonian connectivity of a graph G, IHP(G), is the maximum integer k such that G is k mutually independent hamiltonian connected. Let n and k be any two distinct positive integers with nk ≥ 2. We use S n,k to denote the (n, k)-star graph. In this paper, we prove that IHP(S n,k ) = n–2 except for S 4,2 such that IHP(S 4,2) = 1.   相似文献   

16.
Even graphs     
A nontrivial connected graph G is called even if for each vertex v of G there is a unique vertex v such that d(v, v ) = diam G. Special classes of even graphs are defined and compared to each other. In particular, an even graph G is called symmetric if d(u, v) + d(u, v ) = diam G for all u, vV(G). Several properties of even and symmetric even graphs are stated. For an even graph of order n and diameter d other than an even cycle it is shown that n ≥ 3d – 1 and conjectured that n ≥ 4d – 4. This conjecture is proved for symmetric even graphs and it is shown that for each pair of integers n, d with n even, d ≥ 2 and n ≥ 4d – 4 there exists an even graph of order n and diameter d. Several ways of constructing new even graphs from known ones are presented.  相似文献   

17.
Let G be a simple graph of order n and girth g. For any two adjacent vertices u and v of G, if d G (u) + d G (v) ⩾ n − 2g + 5 then G is up-embeddable. In the case of 2-edge-connected (resp. 3-edge-connected) graph, G is up-embeddable if d G (u) + d G (v) ⩾ n − 2g + 3 (resp. d G (u) + d G (v) ⩾ n − 2g −5) for any two adjacent vertices u and v of G. Furthermore, the above three lower bounds are all shown to be tight. This work was supported by National Natural Science Foundation of China (Grant No. 10571013)  相似文献   

18.
 Some known results on claw-free graphs are generalized to the larger class of almost claw-free graphs. In this paper, we prove the following two results and conjecture that every 5-connected almost claw-free graph is hamiltonian. (1). Every 2-connected almost claw-free graph GJ on n≤ 4 δ vertices is hamiltonian, where J is the set of all graphs defined as follows: any graph G in J can be decomposed into three disjoint connected subgraphs G 1, G 2 and G 3 such that E G (G i , G j ) = {u i , u j , v i v j } for ij and i,j = 1, 2, 3 (where u i v i V(G i ) for i = 1, 2, 3). Moreover the bound 4δ is best possible, thereby fully generalizing several previous results. (2). Every 3-connected almost claw-free graph on at most 5δ−5 vertices is hamiltonian, hereby fully generalizing the corresponding result on claw-free graphs. Received: September 21, 1998 Final version received: August 18, 1999  相似文献   

19.
Use vi,κi,λi,δi to denote order, connectivity, edge-connectivity and minimum degree of a graph Gi for i=1,2, respectively. For the connectivity and the edge-connectivity of the Cartesian product graph, up to now, the best results are κ(G1×G2)?κ1+κ2 and λ(G1×G2)?λ1+λ2. This paper improves these results by proving that κ(G1×G2)?min{κ1+δ2,κ2+δ1} and λ(G1×G2)=min{δ1+δ2,λ1v2,λ2v1} if G1 and G2 are connected undirected graphs; κ(G1×G2)?min{κ1+δ2,κ2+δ1,2κ1+κ2,2κ2+κ1} if G1 and G2 are strongly connected digraphs. These results are also generalized to the Cartesian products of connected graphs and n strongly connected digraphs, respectively.  相似文献   

20.
An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v,u,x,y) of vertices such that both (v,u,x) and (u,x,y) are paths of length two. The 3-arc graph of a given graph G, X(G), is defined to have vertices the arcs of G. Two arcs uv,xy are adjacent in X(G) if and only if (v,u,x,y) is a 3-arc of G. This notion was introduced in recent studies of arc-transitive graphs. In this paper we study diameter and connectivity of 3-arc graphs. In particular, we obtain sharp bounds for the diameter and connectivity of X(G) in terms of the corresponding invariant of G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号