首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
We study the problem of sampling uniformly at random from the set of k-colorings of a graph with maximum degree Δ. We focus attention on the Markov chain Monte Carlo method, particularly on a popular Markov chain for this problem, the Wang–Swendsen–Kotecký (WSK) algorithm. The second author recently proved that the WSK algorithm quickly converges to the desired distribution when k11Δ/6. We study how far these positive results can be extended in general. In this note we prove the first non-trivial results on when the WSK algorithm takes exponentially long to reach the stationary distribution and is thus called torpidly mixing. In particular, we show that the WSK algorithm is torpidly mixing on a family of bipartite graphs when 3k<Δ/(20logΔ), and on a family of planar graphs for any number of colors. We also give a family of graphs for which, despite their small chromatic number, the WSK algorithm is not ergodic when kΔ/2, provided k is larger than some absolute constant k0.  相似文献   

2.
A k‐piece of a graph G is a connected subgraph of G all of whose nodes have degree at most k and at least one node has degree equal to k. We consider the problem of covering the maximum number of nodes of a graph by node disjoint k‐pieces. When k = 1 this is the maximum matching problem, and when k = 2 this is the problem, recently studied by Kaneko [ 19 [, of covering the maximum number of nodes by disjoint paths of length greater than 1. We present a polynomial time algorithm for the problem as well as a Tutte‐type existence theorem and a Berge‐type min‐max formula. We also solve the problem in the more general situation where the “pieces” are defined in terms of lower and upper bounds on the degrees. © 2006 Wiley Periodicals, Inc. J Graph Theory  相似文献   

3.
As an extension of the disjoint paths problem, we introduce a new problem which we call the induced disjoint paths problem. In this problem we are given a graph G and a collection of vertex pairs {(s1,t1),…,(sk,tk)}. The objective is to find k paths P1,…,Pk such that Pi is a path from si to ti and Pi and Pj have neither common vertices nor adjacent vertices for any distinct i,j.The induced disjoint paths problem has several variants depending on whether k is a fixed constant or a part of the input, whether the graph is directed or undirected, and whether the graph is planar or not. We investigate the computational complexity of several variants of the induced disjoint paths problem. We show that the induced disjoint paths problem is (i) solvable in polynomial time when k is fixed and G is a directed (or undirected) planar graph, (ii) NP-hard when k=2 and G is an acyclic directed graph, (iii) NP-hard when k=2 and G is an undirected general graph.As an application of our first result, we show that we can find in polynomial time certain structures called a “hole” and a “theta” in a planar graph.  相似文献   

4.
A graph is k-domination-critical if γ(G) = k, and for any edge e not in G, γ(G + e) = k ? 1. In this paper we show that the diameter of a domination k-critical graph with k ≧ 2 is at most 2k ? 2. We also show that for every k ≧ 2, there is a k-domination-critical graph having diameter [(3/2)k ? 1]. We also show that the diameter of a 4-domination-critical graph is at most 5.  相似文献   

5.
Both the line graph and the clique graph are defined as intersection graphs of certain families of complete subgraphs of a graph. We generalize this concept. By a k-edge of a graph we mean a complete subgraph with k vertices or a clique with fewer than k vertices. The k-edge graph Δk(G) of a graph G is defined as the intersection graph of the set of all k-edges of G. The following three problems are investigated for k-edge graphs. The first is the characterization problem. Second, sets of graphs closed under the k-edge graph operator are found. The third problem is the question of convergence: What happens to a graph if we take iterated k-edge graphs?  相似文献   

6.
The problem of when a recursive graph has a recursive k-coloring has been extensively studied by Bean, Schmerl, Kierstead, Remmel, and others. In this paper, we study the polynomial time analogue of that problem. We develop a number of negative and positive results about colorings of polynomial time graphs. For example, we show that for any recursive graph G and for any k, there is a polynomial time graph G′ whose vertex set is {0,1}* such that there is an effective degree preserving correspondence between the set of k-colorings of G and the set of k-colorings of G′ and hence there are many examples of k-colorable polynomial time graphs with no recursive k-colorings. Moreover, even though every connected 2-colorable recursive graph is recursively 2-colorable, there are connected 2-colorable polynomial time graphs which have no primitive recursive 2-coloring. We also give some sufficient conditions which will guarantee that a polynomial time graph has a polynomial time or exponential time coloring.  相似文献   

7.
We show that every k-connected graph with no 3-cycle contains an edge whose contraction results in a k-connected graph and use this to prove that every (k + 3)-connected graph contains a cycle whose deletion results in a k-connected graph. This settles a problem of L. Lovász.  相似文献   

8.
Calculating the crossing number of a given graph is, in general, an elusive problem. Garey and Johnson have proved that the problem of determining the crossing number of an arbitrary graph is NP-complete. The crossing number of a network(graph) is closely related to the minimum layout area required for the implementation of a VLSI circuit for that network. With this important application in mind, it makes most sense to analyze the the crossing number of graphs with good interconnection properties, such as the circulant graphs. In this paper we study the crossing number of the circulant graph C(mk;{1,k}) for m3, k3, give an upper bound of cr(C(mk;{1,k})), and prove that cr(C(3k;{1,k}))=k.Research supported by Chinese Natural Science Foundation  相似文献   

9.
Necessary conditions for a simple connected graph G to admit a decomposition into closed trails of length k ≥ 3 are that G is even and its total number of edges is a multiple of k. In this paper we show that these conditions are sufficient in the case when G is the complete equipartite graph having at least three parts, each of the same size.  相似文献   

10.
A graph G has maximal local edge‐connectivity k if the maximum number of edge‐disjoint paths between every pair of distinct vertices x and y is at most k. We prove Brooks‐type theorems for k‐connected graphs with maximal local edge‐connectivity k, and for any graph with maximal local edge‐connectivity 3. We also consider several related graph classes defined by constraints on connectivity. In particular, we show that there is a polynomial‐time algorithm that, given a 3‐connected graph G with maximal local connectivity 3, outputs an optimal coloring for G. On the other hand, we prove, for , that k‐colorability is NP‐complete when restricted to minimally k‐connected graphs, and 3‐colorability is NP‐complete when restricted to ‐connected graphs with maximal local connectivity k. Finally, we consider a parameterization of k‐colorability based on the number of vertices of degree at least , and prove that, even when k is part of the input, the corresponding parameterized problem is FPT.  相似文献   

11.
M. Stiebitz 《Combinatorica》1987,7(3):303-312
Some problems and results on the distribution of subgraphs in colour-critical graphs are discussed. In section 3 arbitrarily largek-critical graphs withn vertices are constructed such that, in order to reduce the chromatic number tok−2, at leastc k n 2 edges must be removed. In section 4 it is proved that a 4-critical graph withn vertices contains at mostn triangles. Further it is proved that ak-critical graph which is not a complete graph contains a (k−1)-critical graph which is not a complete graph.  相似文献   

12.
For an integer k > 0, a graph G is k-triangular if every edge of G lies in at least k distinct 3-cycles of G. In (J Graph Theory 11:399–407 (1987)), Broersma and Veldman proposed an open problem: for a given positive integer k, determine the value s for which the statement “Let G be a k-triangular graph. Then L(G), the line graph of G, is s-hamiltonian if and only L(G) is (s + 2)-connected” is valid. Broersma and Veldman proved in 1987 that the statement above holds for 0 ≤ sk and asked, specifically, if the statement holds when s = 2k. In this paper, we prove that the statement above holds for 0 ≤ s ≤ max{2k, 6k − 16}.  相似文献   

13.
Contractible edges in triangle-free graphs   总被引:2,自引:0,他引:2  
An edge of a graph is calledk-contractible if the contraction of the edge results in ak-connected graph. Thomassen [5] proved that everyk-connected graph of girth at least four has ak-contractible edge. In this paper, we study the distribution ofk-contractible edges in triangle-free graphs and show the following: Whenk≧2, everyk-connected graph of girth at least four and ordern≧3k, hasn+(3/2)k 2-3k or morek-contractible edges.  相似文献   

14.
In this paper a new graph partitioning problem is introduced, the relaxed k-way graph partitioning problem. It is close to the k-way, also called multi-way, graph partitioning problem, but with relaxed imbalance constraints. This problem arises in the air traffic control area. A new graph partitioning method is presented, the Fusion Fission, which can be used to resolve the relaxed k-way graph partitioning problem. The Fusion Fission method is compared to classical Multilevel packages and with a Simulated Annealing algorithm. The Fusion Fission algorithm and the Simulated Annealing algorithm, both require a longer computation time than the Multilevel algorithms, but they also find better partitions. However, the Fusion Fission algorithm partitions the graph with a smaller imbalance and a smaller cut than Simulated Annealing does.  相似文献   

15.
Oliver Cooley   《Discrete Mathematics》2009,309(21):6190-6228
The Loebl–Komlós–Sós conjecture states that for any integers k and n, if a graph G on n vertices has at least n/2 vertices of degree at least k, then G contains as subgraphs all trees on k+1 vertices. We prove this conjecture in the case when k is linear in n, and n is sufficiently large.  相似文献   

16.
In this paper we prove that all positive eigenvalues of the Laplacian of an arbitrary simple graph have some positive lower bounds. For a fixed integer k 1 we call a graph without isolated vertices k-minimal if its kth greatest Laplacian eigenvalue reaches this lower bound. We describe all 1-minimal and 2-minimal graphs and we prove that for every k 3 the path Pk+1 on k + 1 vertices is the unique k-minimal graph.  相似文献   

17.
We consider the following edge coloring game on a graph G. Given t distinct colors, two players Alice and Bob, with Alice moving first, alternately select an uncolored edge e of G and assign it a color different from the colors of edges adjacent to e. Bob wins if, at any stage of the game, there is an uncolored edge adjacent to colored edges in all t colors; otherwise Alice wins. Note that when Alice wins, all edges of G are properly colored. The game chromatic index of a graph G is the minimum number of colors for which Alice has a winning strategy. In this paper, we study the edge coloring game on k‐degenerate graphs. We prove that the game chromatic index of a k‐degenerate graph is at most Δ + 3k − 1, where Δ is the maximum vertex degree of the graph. We also show that the game chromatic index of a forest of maximum degree 3 is at most 4 when the forest contains an odd number of edges. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 144–155, 2001  相似文献   

18.
A (hyper)graph G is called k-critical if it has chromatic number k, but every proper sub(hyper)graph of it is (k-1)-colourable. We prove that for sufficiently large k, every k-critical triangle-free graph on n vertices has at least (k-o(k))n edges. Furthermore, we show that every (k+1)-critical hypergraph on n vertices and without graph edges has at least (k-3/3?{k}) n(k-3/\sqrt[3]{k}) n edges. Both bounds differ from the best possible bounds by o(kn) even for graphs or hypergraphs of arbitrary girth.  相似文献   

19.
The chordality of a graph G = (V, E) is defined as the minimum k such that we can write E = E1 ∩ … ∩ Ek with each (V, Ei) a chordal graph. We present several results bounding the value of this generalization of boxicity. Our principal result is that the chordality of a graph is at most its tree width. In particular, series-parallel graphs have chordality at most 2. Potential strengthenings of this statement fail in that there are planar graphs with chordality 3 and series-parallel graphs with boxicity 3. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
A graph is t‐tough if the number of components of G\S is at most |S|/t for every cutset SV (G). A k‐walk in a graph is a spanning closed walk using each vertex at most k times. When k = 1, a 1‐walk is a Hamilton cycle, and a longstanding conjecture by Chvátal is that every sufficiently tough graph has a 1‐walk. When k ≥ 3, Jackson and Wormald used a result of Win to show that every sufficiently tough graph has a k‐walk. We fill in the gap between k = 1 and k ≥ 3 by showing that, when k = 2, every sufficiently tough (specifically, 4‐tough) graph has a 2‐walk. To do this we first provide a new proof for and generalize a result by Win on the existence of a k‐tree, a spanning tree with every vertex of degree at most k. We also provide new examples of tough graphs with no k‐walk for k ≥ 2. © 2000 John Wiley & Sons, Inc. J Graph Theory 33:125–137, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号