首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We extend the basic concepts of Street’s formal theory of monads from the setting of 2-categories to that of double categories. In particular, we introduce the double category of monads in a double category C and define what it means for a double category to admit the construction of free monads. Our main theorem shows that, under some mild conditions, a double category that is a framed bicategory admits the construction of free monads if its horizontal 2-category does. We apply this result to obtain double adjunctions which extend the adjunction between graphs and categories and the adjunction between polynomial endofunctors and polynomial monads.  相似文献   

2.
Graph algebras establish a connection between graphs (i.e. binary relations) and universal algebras. A structure theorem of Birkhoff-type is given which characterizes graph varieties, i.e. classes of graphs which can be defined by identities for their corresponding graph algebras: A class of finite directed graphs without multiple edges is a graph variety iff it is closed with respect to finite restricted pointed subproducts and isomorphic copies. Several applications are given, e.g., every loopless finite directed graph is an induced subgraph of a direct power of a graph with three vertices. Graphs with bounded chromatic number or density form graph varieties characterizable by identities of special kind.Presented by R. W. Quackenbush.  相似文献   

3.
T. Anitha 《代数通讯》2019,47(8):3329-3339
In this paper, for a finite group, we investigate to what extent its directed (resp. undirected) reduced power graph determines its directed power graph (resp. reduced power graph). Moreover, we investigate the determination of the orders of the elements of a finite group from its directed (resp. undirected) reduced power graph. Consequently, we show that some classes of finite groups are recognizable from their undirected reduced power graphs. Also, we study the relationship between the isomorphism classes of groups corresponding to the equivalence relations induced by the isomorphism of each of these graphs on the set of all finite groups.  相似文献   

4.
A directed path graph is the intersection graph of a family of directed subpaths of a directed tree. A rooted directed path graph is the intersection graph of a family of directed subpaths of a rooted tree. Clearly, rooted directed path graphs are directed path graphs. Several characterizations are known for directed path graphs: one by forbidden induced subgraphs and one by forbidden asteroids. It is an open problem to find such characterizations for rooted directed path graphs. With the purpose of proving knowledge in this direction, we show in this paper properties of directed path models that can not be rooted for chordal graphs with any leafage and with leafage four. Therefore, we prove that for leafage four directed path graphs minimally non rooted directed path graphs have a unique asteroidal quadruple, and can be characterized by the presence of certain type of asteroidal quadruples.  相似文献   

5.
Somayeh Moradi 《代数通讯》2018,46(8):3377-3387
In this paper, we introduce and study families of squarefree monomial ideals called clique ideals and independence ideals that can be associated to a finite graph. A family of clique ideals with linear resolutions has been characterized. Moreover, some families of graphs for which the quotient ring of their clique ideal is Cohen–Macaulay are introduced and some homological invariants of the clique ideal of a graph G, which is the complement of a path graph or a cycle graph, are obtained. Also some algebraic properties of the independence ideal of path graphs, cycle graphs and chordal graphs are studied.  相似文献   

6.
A concrete category \mathbb Q\mathbb {Q} is finite-to-finite (algebraically) almost universal if the category of graphs and graph homomorphisms can be embedded into \mathbb Q\mathbb {Q} in such a way that finite \mathbb Q\mathbb {Q}-objects are assigned to finite graphs and non-constant \mathbb Q\mathbb {Q}-morphisms between any \mathbb Q\mathbb {Q}-objects assigned to graphs are exactly those arising from graph homomorphisms. A quasivariety \mathbb Q\mathbb {Q} of algebraic systems of a finite similarity type is Q-universal if the lattice of all subquasivarieties of any quasivariety \mathbb R\mathbb {R} of algebraic systems of a finite similarity type is isomorphic to a quotient lattice of a sublattice of the subquasivariety lattice of \mathbb Q\mathbb {Q}. This paper shows that any finite-to-finite (algebraically) almost universal quasivariety \mathbb Q\mathbb {Q} of a finite type is Q-universal.  相似文献   

7.
A Leavitt path algebra associates to a directed graph a ?-graded algebra and in its simplest form it recovers the Leavitt algebra L(1, k). In this note, we first study this ?-grading and characterize the (?-graded) structure of Leavitt path algebras, associated to finite acyclic graphs, C n -comet, multi-headed graphs and a mixture of these graphs (i.e., polycephaly graphs). The last two types are examples of graphs whose Leavitt path algebras are strongly graded. We give a criterion when a Leavitt path algebra is strongly graded and in particular characterize unital Leavitt path algebras which are strongly graded completely, along the way obtaining classes of algebras which are group rings or crossed-products. In an attempt to generalize the grading, we introduce weighted Leavitt path algebras associated to directed weighted graphs which have natural ⊕?-grading and in their simplest form recover the Leavitt algebras L(n, k). We then show that the basic properties of Leavitt path algebras can be naturally carried over to weighted Leavitt path algebras.  相似文献   

8.
An asteroidal triple is a stable set of three vertices such that each pair is connected by a path avoiding the neighborhood of the third vertex. Asteroidal triples play a central role in a classical characterization of interval graphs by Lekkerkerker and Boland. Their result says that a chordal graph is an interval graph if and only if it contains no asteroidal triple. In this paper, we prove an analogous theorem for directed path graphs which are the intersection graphs of directed paths in a directed tree. For this purpose, we introduce the notion of a strong path. Two non-adjacent vertices are linked by a strong path if either they have a common neighbor or they are the endpoints of two vertex-disjoint chordless paths satisfying certain conditions. A strong asteroidal triple is an asteroidal triple such that each pair is linked by a strong path. We prove that a chordal graph is a directed path graph if and only if it contains no strong asteroidal triple. We also introduce a related notion of asteroidal quadruple, and conjecture a characterization of rooted path graphs which are the intersection graphs of directed paths in a rooted tree.  相似文献   

9.
We are interested in improving the Varshamov bound for finite values of length n and minimum distance d. We employ a counting lemma to this end which we find particularly useful in relation to Varshamov graphs. Since a Varshamov graph consists of components corresponding to low weight vectors in the cosets of a code it is a useful tool when trying to improve the estimates involved in the Varshamov bound. We consider how the graph can be iteratively constructed and using our observations are able to achieve a reduction in the over-counting which occurs. This tightens the lower bound for any choice of parameters n, k, d or q and is not dependent on information such as the weight distribution of a code. This work is taken from the author’s thesis [10]  相似文献   

10.
The spectral radius of a (directed) graph is the largest eigenvalue of adjacency matrix of the (directed) graph. We give the relation on the characteristic polynomials of a directed graph and its line graph, and obtain sharp bounds on the spectral radius of directed graphs. We also give the relation on the spectral radii of a graph and its line graph. As a consequence, the spectral radius of a connected graph does not exceed that of its line graph except that the graph is a path.  相似文献   

11.
In this paper the concept of convexity in directed graphs is described. It is shown that the set of convex subgraphs of a directed graph G partially ordered by inclusion forms a complete, semimodular, A-regular lattice, denoted ?G. The lattice theoretic properties of the convex subgraph lattice lead to inferences about the path structure of the original graph G. In particular, a graph factorization theorem is developed. In Section 4, several graph homomorphism concepts are investigated in relation to the preservation of convexity properties. Finally we characterize an interesting class of locally convex directed graphs.  相似文献   

12.
This paper studies a class of delivery problems associated with the Chinese postman problem and a corresponding class of delivery games. A delivery problem in this class is determined by a connected graph, a cost function defined on its edges and a special chosen vertex in that graph which will be referred to as the post office. It is assumed that the edges in the graph are owned by different individuals and the delivery game is concerned with the allocation of the traveling costs incurred by the server, who starts at the post office and is expected to traverse all edges in the graph before returning to the post office. A graph G is called Chinese postman-submodular, or, for short, CP-submodular (CP-totally balanced, CP-balanced, respectively) if for each delivery problem in which G is the underlying graph the associated delivery game is submodular (totally balanced, balanced, respectively). For undirected graphs we prove that CP-submodular graphs and CP-totally balanced graphs are weakly cyclic graphs and conversely. An undirected graph is shown to be CP-balanced if and only if it is a weakly Euler graph. For directed graphs, CP-submodular graphs can be characterized by directed weakly cyclic graphs. Further, it is proven that any strongly connected directed graph is CP-balanced. For mixed graphs it is shown that a graph is CP-submodular if and only if it is a mixed weakly cyclic graph. Finally, we note that undirected, directed and mixed weakly cyclic graphs can be recognized in linear time. Received May 20, 1997 / Revised version received August 18, 1998?Published online June 11, 1999  相似文献   

13.
A non-crossing geometric graph is a graph embedded on a set of points in the plane with non-crossing straight line segments. In this paper we present a general framework for enumerating non-crossing geometric graphs on a given point set. Applying our idea to specific enumeration problems, we obtain faster algorithms for enumerating plane straight-line graphs, non-crossing spanning connected graphs, non-crossing spanning trees, and non-crossing minimally rigid graphs. Our idea also produces efficient enumeration algorithms for other graph classes, for which no algorithm has been reported so far, such as non-crossing matchings, non-crossing red-and-blue matchings, non-crossing k-vertex or k-edge connected graphs, or non-crossing directed spanning trees. The proposed idea is relatively simple and potentially applies to various other problems of non-crossing geometric graphs.  相似文献   

14.
Summary The best algorithm for finding the shortest paths between every pair of vertices in a complete graph is the triple algorithm. This algorithm can be described algebraically as an operation of a category on the set of real valued finite directed graphs.  相似文献   

15.
In a fundamental paper, G. Sabidussi [“Graph Multiplication,” Mathematische Zeitschrift, Vol. 72 (1960), pp. 446–457] used a tower of equivalence relations on the edge set E(G) of a connected graph G to decompose G into a Cartesian product of prime graphs. Later, a method by R.L. Graham and P.M. Winkler [“On Isometric Embeddings of Graphs,” Transactions of the American Mathematics Society, Vol. 288 (1985), pp. 527–533] of embedding a connected graph isometrically into Cartesian products opened another approach to this problem. In both approaches an equivalence relation σ that determines the prime factorization is constructed. The methods differ by the starting relations used. We show that σ can be obtained as the convex hull of the starting relation used by Sabidussi. Our result also holds for the relation determining the prime decomposition of infinite connected graphs with respect to the weak Cartesian product. Moreover, we show that this relation is the transitive closure of the union of the starting relations of Sabidussi and Winkler [“Factoring a Graph in Polynomial Time,” European Journal of Combinatorics, Vol. 8 (1987), pp. 209–212], thereby generalizing the result of T. Feder [“Product Graph Representations,” Journal of Graph Theory, Vol 16 (1993), pp. 467–488] from finite to infinite graphs.  相似文献   

16.
We show that regular median graphs of linear growth are the Cartesian product of finite hypercubes with the two-way infinite path. Such graphs are Cayley graphs and have only two ends.For cubic median graphs G the condition of linear growth can be weakened to the condition that G has two ends. For higher degree the relaxation to two-ended graphs is not possible, which we demonstrate by an example of a median graph of degree four that has two ends, but nonlinear growth.  相似文献   

17.
We define Hopf monads on an arbitrary monoidal category, extending the definition given in Bruguières and Virelizier (2007) [5] for monoidal categories with duals. A Hopf monad is a bimonad (or opmonoidal monad) whose fusion operators are invertible. This definition can be formulated in terms of Hopf adjunctions, which are comonoidal adjunctions with an invertibility condition. On a monoidal category with internal Homs, a Hopf monad is a bimonad admitting a left and a right antipode.Hopf monads generalize Hopf algebras to the non-braided setting. They also generalize Hopf algebroids (which are linear Hopf monads on a category of bimodules admitting a right adjoint). We show that any finite tensor category is the category of finite-dimensional modules over a Hopf algebroid.Any Hopf algebra in the center of a monoidal category C gives rise to a Hopf monad on C. The Hopf monads so obtained are exactly the augmented Hopf monads. More generally if a Hopf monad T is a retract of a Hopf monad P, then P is a cross product of T by a Hopf algebra of the center of the category of T-modules (generalizing the Radford–Majid bosonization of Hopf algebras).We show that the comonoidal comonad of a Hopf adjunction is canonically represented by a cocommutative central coalgebra. As a corollary, we obtain an extension of Sweedler?s Hopf module decomposition theorem to Hopf monads (in fact to the weaker notion of pre-Hopf monad).  相似文献   

18.
We study the first cardinalκ satisfying a partition relation defined on the set of finite sequences of smaller ordinals. We show that the fact that this cardinal is ℵω is equiconsistent with the existence of a measurable cardinal. Under GCH, this cardinal must be inaccessible if it has uncountable cofinality. It is shown that the GCH assumption is necessary here.  相似文献   

19.
In this paper, we provide the structure of the Leavitt path algebra of a finite graph via some step-by-step process of source eliminations, and restate Kanuni and Özaydin's nice criterion for Leavitt path algebras of finite graphs having Invariant Basis Number via matrix-theoretic language. Consequently, we give a matrix-theoretic criterion for the Leavitt path algebra of a finite graph having Invariant Basis Number in terms of a sequence of source eliminations. Using these results, we show certain classes of finite graphs for which Leavitt path algebras have Invariant Basis Number, as well as investigate the Invariant Basis Number property of Leavitt path algebras of certain Cayley graphs of finite groups.  相似文献   

20.
We establish a connection between abstract clones and operads, which implies that both clones and operads are particular instances of a more general notion. The latter is called W-operad (due to a close resemblance with operads) and can be regarded as a functor on a certain subcategory W, of the category of finite ordinals, with some rather natural properties. When W is a category whose morphisms are the various bijections, the variety of W-operads is rationally equivalent to the variety of operads in the traditional sense. Our main result claims that if W coincides with the category of all finite ordinals then the variety of W-operads is rationally equivalent to the variety of abstract clones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号