首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Let denote the maximum average degree (over all subgraphs) of G and let χi(G) denote the injective chromatic number of G. We prove that if , then χi(G)≤Δ(G)+1; and if , then χi(G)=Δ(G). Suppose that G is a planar graph with girth g(G) and Δ(G)≥4. We prove that if g(G)≥9, then χi(G)≤Δ(G)+1; similarly, if g(G)≥13, then χi(G)=Δ(G).  相似文献   

3.
4.
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number of the graph G is the smallest number of colors in a linear coloring of G. In this paper we prove that every planar graph G with girth g and maximum degree Δ has if G satisfies one of the following four conditions: (1) g≥13 and Δ≥3; (2) g≥11 and Δ≥5; (3) g≥9 and Δ≥7; (4) g≥7 and Δ≥13. Moreover, we give better upper bounds of linear chromatic number for planar graphs with girth 5 or 6.  相似文献   

5.
An oriented k-coloring of an oriented graph G is a homomorphism from G to an oriented graph H of order k. We prove that every oriented graph with a maximum average degree less than and girth at least 5 has an oriented chromatic number at most 16. This implies that every oriented planar graph with girth at least 5 has an oriented chromatic number at most 16, that improves the previous known bound of 19 due to Borodin et al. [O.V. Borodin, A.V. Kostochka, J. Nešet?il, A. Raspaud, É. Sopena, On the maximum average degree and the oriented chromatic number of a graph, Discrete Math. 206 (1999) 77-89].  相似文献   

6.
Two cycles are said to be adjacent if they share a common edge. Let G be a planar graph without triangles adjacent 4-cycles. We prove that if Δ(G)≥6, and and if Δ(G)≥8, where and denote the list edge chromatic number and list total chromatic number of G, respectively.  相似文献   

7.
王侃 《数学研究》2011,44(4):399-410
如果图G的一个正常染色满足染任意两种颜色的顶点集合导出的子图是一些点不交的路的并,则称这个正常染色为图G的线性染色.图G的线性色数用lc(G)表示,是指G的所有线性染色中所用的最少颜色的个数.证明了:若G是一个最大度△(G)≠5,6的平面图,则lc(G)≤2△(G).  相似文献   

8.
Albert Guan 《Discrete Mathematics》2009,309(20):6044-6047
Given a (possibly improper) edge colouring F of a graph G, a vertex colouring of G is adapted toF if no colour appears at the same time on an edge and on its two endpoints. A graph G is called (for some positive integer k) if for any list assignment L to the vertices of G, with |L(v)|≥k for all v, and any edge colouring F of G, G admits a colouring c adapted to F where c(v)∈L(v) for all v. This paper proves that a planar graph G is adaptably 3-choosable if any two triangles in G have distance at least 2 and no triangle is adjacent to a 4-cycle.  相似文献   

9.
王侃  王维凡 《数学研究》2011,44(1):76-85
如果图G的一个正常染色满足染任意两种颜色的顶点集合导出的子图是一些点不交的路的并,则称这个正常染色为图G的线性染色.图G的线性色数用lc(G)表示,是指G的所有线性染色中所用的最少颜色的个数本文证明了对于每一个最大度为△(G)且围长至少为5的平面图G有lc(G)≤[△(G)/2]+5,并且当△(G)∈{7,8,…,14...  相似文献   

10.
11.
A star edge-coloring of a graph G is a proper edge coloring such that every 2-colored connected subgraph of G is a path of length at most 3. For a graph G, let the list star chromatic index of G, chs(G), be the minimum k such that for any k-uniform list assignment L for the set of edges, G has a star edge-coloring from L. Dvo?ák et al. (2013) asked whether the list star chromatic index of every subcubic graph is at most 7. In Kerdjoudj et al. (2017) we proved that it is at most 8. In this paper we consider graphs with any maximum degree, we proved that if the maximum average degree of a graph G is less than 145 (resp. 3), then chs(G)2Δ(G)+2 (resp. chs(G)2Δ(G)+3).  相似文献   

12.
13.
An injective coloring of a graph G is an assignment of colors to the vertices of G so that any two vertices with a common neighbor have distinct colors. A graph G is injectively k-choosable if for any list assignment L, where |L(v)|k for all vV(G), G has an injective L-coloring. Injective colorings have applications in the theory of error-correcting codes and are closely related to other notions of colorability. In this paper, we show that subcubic planar graphs with girth at least 6 are injectively 5-choosable. This strengthens the result of Lu?ar, ?krekovski, and Tancer that subcubic planar graphs with girth at least 7 are injectively 5-colorable. Our result also improves several other results in particular cases.  相似文献   

14.
Let G be a planar graph with maximum degree 4. It is known that G is 8-totally choosable. It has been recently proved that if G has girth g?6, then G is 5-totally choosable. In this note we improve the first result by showing that G is 7-totally choosable and complete the latter one by showing that G is 6-totally choosable if G has girth at least 5.  相似文献   

15.
An r-dynamic k-coloring of a graph G is a proper k-coloring such that for any vertex v, there are at least min{r,degG(v)} distinct colors in NG(v). The r-dynamic chromatic numberχrd(G) of a graph G is the least k such that there exists an r-dynamic k-coloring of G. The listr-dynamic chromatic number of a graph G is denoted by chrd(G).Recently, Loeb et al. (0000) showed that the list 3-dynamic chromatic number of a planar graph is at most 10. And Cheng et al. (0000) studied the maximum average condition to have χ3d(G)4,5, or 6. On the other hand, Song et al. (2016) showed that if G is planar with girth at least 6, then χrd(G)r+5 for any r3.In this paper, we study list 3-dynamic coloring in terms of maximum average degree. We show that ch3d(G)6 if mad(G)<187, ch3d(G)7 if mad(G)<145, and ch3d(G)8 if mad(G)<3. All of the bounds are tight.  相似文献   

16.
A proper vertex coloring of a graph G = (V,E) is acyclic if G contains no bicolored cycle. A graph G is L‐list colorable if for a given list assignment L = {L(v): vV}, there exists a proper coloring c of G such that c (v) ∈ L(v) for all vV. If G is L‐list colorable for every list assignment with |L (v)| ≥ k for all vV, then G is said k‐choosable. A graph is said to be acyclically k‐choosable if the obtained coloring is acyclic. In this paper, we study the links between acyclic k‐choosability of G and Mad(G) defined as the maximum average degree of the subgraphs of G and give some observations about the relationship between acyclic coloring, choosability, and acyclic choosability. © 2005 Wiley Periodicals, Inc. J Graph Theory 51: 281–300, 2006  相似文献   

17.
Improper choosability of planar graphs has been widely studied. In particular, ?krekovski investigated the smallest integer gk such that every planar graph of girth at least gk is k‐improper 2‐choosable. He proved [9] that 6 ≤ g1 ≤ 9; 5 ≤ g2 ≤ 7; 5 ≤ g3 ≤ 6; and ? k ≥ 4, gk = 5. In this article, we study the greatest real M(k, l) such that every graph of maximum average degree less than M(k, l) is k‐improper l‐choosable. We prove that if l ≥ 2 then . As a corollary, we deduce that g1 ≤ 8 and g2 ≤ 6, and we obtain new results for graphs of higher genus. We also provide an upper bound for M(k, l). This implies that for any fixed l, . © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 181–199, 2006  相似文献   

18.
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is a union of vertex-disjoint paths. The linear chromatic number of G is the smallest number of colors in a linear coloring of G.Let G be a graph with maximum degree Δ(G). In this paper we prove the following results: (1) ; (2) if Δ(G)≤4; (3) if Δ(G)≤5; (4) if G is planar and Δ(G)≥52.  相似文献   

19.
20.
Planar graphs without 5-cycles or without 6-cycles   总被引:1,自引:0,他引:1  
Qin Ma  Xiao Yu 《Discrete Mathematics》2009,309(10):2998-1187
Let G be a planar graph without 5-cycles or without 6-cycles. In this paper, we prove that if G is connected and δ(G)≥2, then there exists an edge xyE(G) such that d(x)+d(y)≤9, or there is a 2-alternating cycle. By using the above result, we obtain that (1) its linear 2-arboricity , (2) its list total chromatic number is Δ(G)+1 if Δ(G)≥8, and (3) its list edge chromatic number is Δ(G) if Δ(G)≥8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号