首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper(II) complexes of the potentially tripodal N,N,O ligand 3,3-bis(1-methylimidazol-2-yl)propionate (L1) and its conjugate acid HL1 have been synthesised and structurally and spectroscopically characterised. The reaction of equimolar amounts of ligand and CuII resulted in the complexes [Cu(L1)]n(X)n (X=OTf-, PF6(-); n=1,2), for which a new bridging coordination mode of L1 is inferred. Although these complexes showed moderate catecholase activity in the oxidation of 3,5-di-tert-butylcatechol, surprising reactivity with the pseudo-substrate tetrachlorocatechol was observed. A chloranilato-bridged dinuclear CuII complex was isolated from the reaction of [Cu(L1)]n(PF6)n with tetrachlorocatechol. This stoichiometric oxidative double dehalogenation of tetrachlorocatechol to chloranilic acid by a biomimetic copper(II) complex is unprecedented. The crystal structure of the product, [Cu2(ca)Cl2(HL1)2], shows a bridging bis-bidentate chloranilato (ca) ligand and ligand L1 coordinated as its conjugate acid (HL1) in a tridentate fashion. Magnetic susceptibility studies revealed weak antiferromagnetic coupling (J= -35 cm(-1)) between the two copper centres in the dinuclear complex. Dissolution of the green complex [Cu2(ca)Cl2(HL1)2] resulted in the formation of new pink-purple mononuclear compound [Cu(ca)(HL1)(H2O)], the crystal structure of which was determined. It showed a terminal bidentate chloranilato ligand and N,N-bidentate coordination of ligand HL1, which illustrates the flexible coordination chemistry of ligand L1.  相似文献   

2.
We report the exceptional reactivity towards dioxygen of a nanostructured organic-inorganic hybrid material due to the confinement of copper cyclam within a silica matrix. The key step is the metalation reaction of the ligand, which can occur before or after xerogel formation through the sol-gel process. The incorporation of a Cu(II) center into the material after xerogel formation leads to a bridged Cu(I)/Cu(II) mixed-valence dinuclear species. This complex exhibits a very high affinity towards dioxygen, attributable to auto-organization of the active species in the solid. The remarkable properties of these copper complexes in the silica matrix demonstrate a high cooperative effect for O(2) adsorption; this is induced by close confinement of the two copper ions leading to end-on mu-eta(1):eta(1)-peroxodicopper(II) complexes. The anisotropic packing of the tetraazamacrocycle in a lamellar structure induces an exceptional reactivity of these copper complexes. We show for the first time that the organic-inorganic environment of copper complexes in a silica matrix fully model the protecting role of protein in metalloenzymes. For the first time an oxygenated dicopper(II) complex can be isolated in a stable form at room temperature, and the reduced Cu(2) (I,I) species can be regenerated after several adsorption-desorption cycles. These data also demonstrate that the coordination scheme and reactivity of the copper cyclams within the solid are quite different from that observed in solution.  相似文献   

3.
A neutral selenium donor ligand, [CpFe(CO)(2)P(Se)(OR)(2)] is used for the construction of Cu(I) and Ag(I) complexes with a well-defined coordination environment. Four clusters [M{CpFe(CO)(2)P(Se)(OR)(2)}(3)](PF(6)), (where M = Cu, R = (n)Pr, ; R = (i)Pr, and M = Ag, R = (n)Pr, ; R = (i)Pr, ) are isolated from the reaction of [M(CH(3)CN)(4)(PF(6))] (where M = Cu or Ag) and [CpFe(CO)(2)P(Se)(OR)(2)] in a molar ratio of 1 : 3 in acetonitrile at 0 degrees C. The reaction of [CpFe(CO)(2)P(Se)(O(i)Pr)(2)] with cuprous halides in acetone produce two mixed-metal, Cu(I)(2)Fe(II)(2) clusters, [Cu(mu-X) {CpFe(CO)(2)P(Se)(O(i)Pr)(2)}](2) (X = Cl, ; Br, ). All six clusters have been fully characterized spectroscopically ((1)H, (13)C, (31)P, and (77)Se NMR, IR), and by elemental analyses. X-Ray crystal structures of and consist of discrete cationic clusters in which three iron-selenophosphito fragments are linked to the central copper or silver atom via selenium atoms. Both clusters and crystallize in the noncentrosymmetric, hexagonal space group P6[combining macron]2c. The coordination geometry around the copper or silver atom is perfect trigonal-planar with Cu-Se and Ag-Se distances, 2.3505(7) and 2.5581(7) A, respectively. X-Ray crystallography also reveals that each copper center in neutral heterometallic clusters and is trigonally coordinated to two halide ions and a selenium atom from the selenophosphito-iron moiety. The structures can also be delineated as a dimeric unit which is generated by an inversion center and has a Cu(2)X(2) parallelogram core. The dihedral angle between the Cu(2)X(2) plane and the plane composed of Cp ring is found to be 24.62 and 84.58 degrees for compound and , respectively. Hence the faces of two opposite Cp rings are oriented almost perpendicular to the Cu(2)X(2) plane in , but are close to be parallel in . This is the first report of the coordination chemistry of the anionic selenophosphito moiety [(RO)(2)PSe](-), the conjugated base of a secondary phosphine selenide, which acts as a bridging ligand with P-coordination on iron and Se-coordination to copper or silver.  相似文献   

4.
分别采用水热反应法和溶液培养法, 合成了两个结构新颖的铜配合物[Cu3(Ipz)3] (Ipz=4-碘吡唑) (1), [Cu(SO4)(Ipz)4]·2H2O·CH3OH (2)。通过元素分析、红外光谱、紫外光谱和X-ray单晶衍射方法对其结构进行了表征。晶体结构表明, 配合物1属于正交晶系, Pnma空间群;配合物2属于三斜晶系, P1空间群。配合物1和2的中心金属铜原子的化合价分别是+1和+2价, 金属的配位环境以及配体的配位模式也完全不同。配合物1中金属铜为二配位, 与配体相互连接形成一个闭合的九元环结构;配合物2中金属铜为六配位, 通过配位的硫酸根分子连接形成一条无限的一维链状结构。此外, 对这2个配合物进行了量化计算, 同时还对配合物1进行了荧光光谱分析。  相似文献   

5.
The copper(II) and copper(I) complexes of the chelating ligands 2,6-bis(benzimidazol-2'-ylthiomethyl)pyridine (bbtmp) and N,N-bis(benzimidazol-2'-ylthioethyl)methylamine (bbtma) have been isolated and characterized by electronic and EPR spectra. The molecular structures of a redox pair of Cu(II/I) complexes, viz., [Cu(bbtmp)(NO(3))]NO(3), 1, and [Cu(bbtmp)]NO(3), 2, and of [Cu(bbtmp)Cl], 3, have been determined by single-crystal X-ray crystallography. The cation of the green complex [Cu(bbtmp)(NO(3))]NO(3) possesses an almost perfectly square planar coordination geometry in which the corners are occupied by the pyridine and two benzimidazole nitrogen atoms of the bbtmp ligand and an oxygen atom of the nitrate ion. The light-yellow complex [Cu(bbtmp)]NO(3) contains copper(I) with trigonal planar coordination geometry constituted by the pyridine and two benzimidazole nitrogen atoms of the bbtmp ligand. In the yellow chloride complex [Cu(bbtmp)Cl] the asymmetric unit consists of two complex molecules that are crystallographically independent. The coordination geometry of copper(I) in these molecules, in contrast to the nitrate, is tetrahedral, with pyridine and two benzimidazole nitrogen atoms of bbtmp ligand and the chloride ion occupying the apexes. The above coordination structures are unusual in that the thioether sulfurs are not engaged in coordination and the presence of two seven-membered chelate rings facilitates strong coordination of the benzimidazole nitrogens and discourage any distortion in Cu(II) coordination geometry. The solid-state coordination geometries are retained even in solution, as revealed by electronic, EPR, and (1)H NMR spectra. The electrochemical behavior of the present and other similar CuN(3) complexes has been examined, and the thermodynamic aspects of the electrode process are correlated to the stereochemical reorganizations accompanying the redox changes. The influence of coordinated pyridine and amine nitrogen atoms on the spectral and electrochemical properties has been discussed.  相似文献   

6.
A novel polymeric Pr2Cu3 complex of iminodiacetic acid (H2L1=NH{CH2COOH}2) [Pr2Cu3(L1)6]n , 1, has been synthesized and structurally characterized. The title complex Pr2Cu3O24N6C24H30 (Mr=1258.97) crystallized in trigonal space group Pc1 (No. 165) with a = 13.424(4), c=14.752(6)(); V=2303(1)()3; F(000)=1226; λ(MoKα)=35.2 cm-1; Dc=1.820 g.cm-3; Z=2. The final R and Rw are 0.072 and 0.081 respectively for 1412 reflections with I>3σ(I). In crystal 1, the Pr3+ ion is nine-coordinated by 6 O atoms from three bidentate chelating carboxylate groups and 3 O atoms from three anti-anti bridging carboxylic groups of six L1 ligands; the Cu2+ ion is six-coordinated by 4 O and 2 N atoms from two pentadentate L1 ligands. Each pair of Pr(Ⅲ) atoms is bridged by three L1 ligands, each of which also chelates with one copper(Ⅱ) ion, thus forming a Pr2Cu3 cluster unit. Such cluster units are cross-linked by flexible L1 ligands into a three-dimensional coordination framework.  相似文献   

7.
As part of our efforts to develop the transition metal chemistry of corrolazines, which are ring-contracted porphyrinoid species most closely related to corroles, the vanadium and copper complexes (TBP)(8)Cz(H)V(IV)O (1) and (TBP)(8)CzCu(III) (2) of the ligand octakis(para-tert-butylphenyl)corrolazine [(TBP)(8)Cz] have been synthesized. The coordination behavior, preferred oxidation states, and general redox properties of metallocorrolazines are of particular interest. The corrolazine ligand in 1 was shown to contain a labile proton by acid/base titration and IR spectroscopy, serving as a -2 ligand rather than as the usual -3 donor. The oxidation state of the vanadium center in 1 was shown to be +4, in agreement with the overall neutral charge for this complex. The EPR spectrum of 1 reveals a rich signal consistent with a V(IV)(O) (d(1), S = 1/2) porphyrinoid species (g(xx) = 1.989, g(yy) = 1.972, g(zz) = 1.962). The electrochemical analysis of 1 shows behavior closer to that of a porphyrazine than a corrolazine, with a positively shifted, irreversible reduction at -0.65 V (vs Ag/AgCl). Resonance Raman and IR data for 1 confirm the presence of a triply bonded terminal oxo ligand with nu(V(16)O) = 975 cm(-1) and nu(V(18)O) = 939 cm(-1). The copper complex 2 exhibits a diamagnetic (1)H NMR spectrum, indicative of a bona fide square planar copper(III) (d(8), low-spin) complex. Previously reported copper corroles have been characterized as copper(III) complexes which exhibit a paramagnetic NMR spectrum at higher temperatures, indicative of a thermally accessible triplet excited state ([(corrole(*+))Cu(II)]). The NMR spectrum for 2 shows no paramagnetic behavior in the range 300-400 K, indicating that compound 2 does not have a thermally accessible triplet excited state. These data show that the corrolazine system is better able to stabilize the high oxidation state copper center than the corresponding corroles. Electrochemical studies of 2 reveal two reversible processes at +0.93 and -0.05 V, and bulk reduction of 2 with NaBH(4) generates the copper(II) species [(TBP)(8)CzCu(II)](-) (2a), which exhibits an EPR signal typical of a copper(II) porphyrinoid species.  相似文献   

8.
The 2,2'-dipicolylamine (DPA)-tethered thioglycoside ligand, N,N-bis(2-pyridylmethyl)-2-aminoethyl 1-deoxy-1-thio-2,3,4,6-tetra-O-acetyl-beta-d-glucopyranoside (sL1), has been prepared and its copper(II) complex synthesized. Using copper(II) chloride, the copper complex was isolated as a chloride-bound species formulated as [Cu(sL1)Cl(ClO(4))](1). The corresponding O-glycoside complex ([Cu(L1)Cl](ClO(4)), 2) was also prepared using L1 (N,N-bis(2-pyridylmethyl)-2-aminoethyl 2,3,4,6-tetra-O-acetyl-beta-d-glucopyranoside), and both complexes were characterized and compared by means of X-ray crystallography, cyclic voltammetry, electronic absorption and circular dichroism (CD) spectra. Although both complexes exhibited similar copper coordination geometries, the absolute configuration of the O/S chiral center generated by the copper coordination was inverted. The electronic and CD spectra of acetonitrile solutions of 1 and 2 were different likely due to the presence of a copper-sulfur charge-transfer band for 1. Complex also exhibits a large Cotton effect around 700 nm. The corresponding d-d transition of the copper(II) center reveals that the asymmetric copper-sulfur (oxygen) coordination remains even in solution.  相似文献   

9.
The interaction of nitric oxide with copper(ii) complexes of two octarepeat sequences belonging to the prion protein was studied, considering both mononuclear and dinuclear systems, i.e. Cu-Ac-(PHGGGWGQ)(2)-NH(2) and Cu(2)-Ac-(PHGGGWGQ)(2)-NH(2), respectively. The NO interaction with both systems was followed in aqueous solutions at physiological pH value, by using UV-Vis and EPR spectroscopic techniques as well as cyclic voltammetry. The mechanism of NO interaction with the mononuclear copper complex can be considered similar to that previously observed for the analogous copper systems with Ac-HGGG-NH(2) and Ac-PHGGGWGQ-NH(2). A more complicated behaviour was found with the copper dinuclear system, in which the involvement of two different intermediate complex species was evidenced. A positive cooperativity between the two copper ions, in the reduction process was inferred. When working with a large excess of the Ac-(PHGGGWGQ)(2)-NH(2) ligand, the frozen-solution EPR parameters pertain to the well characterized [Cu(N(im))(4)](2+) unit, which did not exhibit any interaction with NO. The presence of a free coordination site is the necessary requirement for the NO interaction to occur, as found only in the square-pyramidal geometry of [Cu(L)H(-2)] or [Cu(2)(L)H(-4)] complex species, which form when copper and ligand concentrations are similar.  相似文献   

10.
Three dinuclear copper(i) complexes with the formula [Cu(2)(mu-X)(2)(1,2-(P(i)Pr(2))(2)-1,2-C(2)B(10)H(10))(2)] (X = Cl (), Br (), I ()) containing the closo carborane diphosphine ligand 1,2-(P(i)Pr(2))(2)-1,2-C(2)B(10)H(10) have been prepared and characterized by elemental analysis, FT-IR and X-ray structure determination. The X-ray structure analyses revealed that the three complexes were isostructural and crystallized in the monoclinic system and space group C2/m. The carborane cage ligand was coordinated bidentately to the Cu(i) center through its two phosphorus atoms, and the coordination geometry around each copper atom was distorted tetrahedral. Two halogen atoms bridged the metal centers forming a dimer structure [Cu(2)(mu-X)(2)(1,2-(P(i)Pr(2))(2)-1,2-C(2)B(10)H(10))(2)], which were linked into 2D supramolecular networks through novel C-HH-B dihydrogen bonding interactions.  相似文献   

11.
The coordination chemistry of the tetradentate pyridyl-thiazole (py-tz) N-donor ligand 6,6'-bis(4-phenylthiazol-2-yl)-2,2'-bipyridine (L1) has been investigated. Reaction of L1 with equimolar copper(II) ions results in the formation of the single-stranded mononuclear complex [Cu(L1)(ClO4)2] (1), whereas reaction with copper(I) ions results in the double-stranded dinuclear helicate [Cu2(L1)2][PF6]2 (2). Both complexes were characterized by X-ray crystallography, UV-vis spectroscopy, and electrospray ionization mass spectroscopy (as well as 1H NMR spectroscopy for diamagnetic 2). Complex 2 is redox-active and, upon one-electron oxidation, forms the stable tricationic mixed-valence helicate [Cu2(L1)2]3+ (3). This species can also be prepared in situ by combining [Cu(MeCN)4][BF4], [Cu(H2O)6][BF4]2, and L1 in a 1:1:2 ratio in nitromethane. X-ray crystallographic analysis of 3 provides structural evidence for the presence of an internuclear Cu-Cu bond, with an even distribution of spin density across the two Cu centers. Room-temperature UV-vis spectroscopy is consistent with this finding; however, frozen-glass EPR spectroscopic investigations suggest solvatochromic behavior at 110 K, with the [Cu2]3+ core varying from localized to delocalized depending on the solvent polarity.  相似文献   

12.
Cu-exchanged Y zeolite was investigated in order to determine the location of the copper cations relative to the zeolite framework and to determine which Cu cations are active for the oxidative carbonylation of methanol to dimethyl carbonate (DMC). Cu-Y zeolite was prepared by vapor-phase exchange of H-Y with CuCl. The oxidation state, local coordination, and bond distances of Al and Cu were determined using Al K-edge and Cu K-edge X-ray absorption spectroscopy (XAS). Complimentary information was obtained by H2 temperature-programmed reduction and by in-situ infrared spectroscopy. Cu-Y has a Cu/Al ratio of unity and very little occluded CuCl. The average Al-O and Al-Cu bond distances are 1.67 angstroms and 2.79 angstroms, respectively, and the average Cu-O and Cu-Si(Al) bond distances are 1.99 angstroms and 3.13 angstroms, respectively. All of the Cu exchanged is present as Cu+ in sites I', II, and III'. Cu-Y is active for the oxidative carbonylation of methanol, and at low reactant contact time produces DMC as the primary product. With increasing reactant contact time, DMC formation decreases in preference to the formation of dimethoxy methane (DMM) and methylformate (MF). The formation of DMM and MF is attributed to the hydrogenation of DMC and the hydrogenolysis of DMM, respectively. Observation of the catalyst under reaction conditions reveals that most of the copper cations remain as Cu+, but some oxidation of Cu+ to Cu2+ does occur. It is also concluded that only those copper cations present in site II and III' positions are accessible to the reactants, and hence are catalytically active. The dominant adsorbed species on the surface are methoxy groups, and adsorbed CO is present as a minority species. The relationship of these observations to the kinetics of DMC synthesis is discussed.  相似文献   

13.
A novel neutral mixed-valent Cu(I)Cu(II)(2) triangular metallomacrocycle [Cu(3)L(2)(HL)].3CH(3)OH.2H(2)O (1) was assembled by reaction of the tetradentate ligand bis(N-salicylidene-4,4'-diphenylamine), H(2)L, with a copper(II) salt. ESI-MS show peaks only corresponding to the triangular structural species, indicating the high stability of the trimer structure in solution. Magnetic study confirms that there are two Cu(II) ions and one Cu(I) ion in a discrete triangular molecule. The crystal structure of 1 reveals that the triangle is formed by three deprotonated ligands and three copper ions with a Cu-Cu separation of ca. 11.8 A. Each copper atom is coordinated by two oxygen atoms and two nitrogen atoms from two different bis-bidentate ligands in a heavily distorted tetrahedral geometry, while each ligand is bound to two metal ions in a bis-bidentate coordination mode and links the metal centers overlapping in an unprogressive manner. Strong intramolecular pi.pi interactions between the ligands are found to stabilize the constraint conformation of the triangle. Electrochemical study reveals that the mixed-valent Cu(I)Cu(II)(2) complex is the most stable state in solution condition, and the electrochemical communication between the copper ions might be explained on the basis of the through-bond interaction. UV-vis-NIR spectral measurement demonstrates the Robin-Day class II behavior of the mixed-valence compound with a weak copper-copper interaction.  相似文献   

14.
INTRODUCTIONThesynthesisofpolynuclearcopper lanthanoidcomplexesisofspecialinterestforsev eralreasons〔1-4〕.Thesecomplexesareim...  相似文献   

15.
Galactose oxidase (GO) is an enzyme that catalyzes two-electron oxidations. Its active site contains a copper atom coordinated to a tyrosyl radical, the biogenesis of which requires copper and dioxygen. We have recently studied the properties of electrochemically generated mononuclear Cu(II)-phenoxyl radical systems as model compounds of GO. We present here the solution chemistry of these ligands under various copper and dioxygen statuses: N(3)O ligands first chelate Cu(II), leading, in the presence of base, to [Cu(II)(ligand)(CH(3)CN)](+) complexes (ortho-tert-butylated ligands) or [(Cu(II))(2)(ligand)(2)](2+) complexes (ortho-methoxylated ligands). Excess copper(II) then oxidizes the complex to the corresponding mononuclear Cu(II)-phenoxyl radical species. N(2)O(2) tripodal ligands, in the presence of copper(II), afford directly a copper(II)-phenoxyl radical species. Addition of more than two molar equivalents of copper(II) affords a Cu(II)-bis(phenoxyl) diradical species. The donor set of the ligand directs the reaction towards comproportionation for ligands possessing an N(3)O donor set, while disproportionation is observed for ligands possessing an N(2)O(2) donor set. These results are discussed in the light of recent results concerning the self-processing of GO. A path involving copper(II) disproportionation is proposed for oxidation of the cross-linked tyrosinate of GO, supporting the fact that both copper(I) and copper(II) activate the enzyme.  相似文献   

16.
The syntheses of two phenylamine-based ligand systems, N(o-PhNH(2))(3) and N(o-PhNHC(O)(i)Pr)(3), are reported. These ligands readily coordinate to Co(II) to form monomeric complexes. X-ray diffraction studies establish that the [N(o-PhNC(O)(i)Pr)(3)](3-) ligand stabilizes the Co(II) ion in a trigonal-monopyramidal coordination environment. The axial coordination site in this complex is accessible and, upon cyanide coordination, generates an electrochemically active species.  相似文献   

17.
The new ligand, [(1,4,8,11-tetraazacyclotetradecan-1-yl)methyl]phosphonic acid (H(2)te1P, H(2)L), was synthesized and its complexing properties towards selected metal ions were studied potentiometrically. The ligand forms a very stable complex with copper(ii)(logbeta(CuL)= 27.34), with a high selectivity over binding of other metal ions (i.e. logbeta(ZnL)= 21.03). The crystal structures of the free ligand (in its protonated form with bromide as counter-ion) and two copper(ii) complexes (obtained by crystallization at various pH) were determined. The free ligand adopts the common conformation for such macrocycles with the protonated nitrogen atoms in the corners of a virtual rectangle. In the trans-Br,O-[Cu(Br)(Hte1P)].H(2)O species, the central metal ion is surrounded by four in plane nitrogen atoms, one oxygen atom of the pendant moiety in the apical position and a bromide anion positioned trans to the oxygen atom, forming a distorted octahedral coordination sphere. In the compound [Cu(H(2)te1P)][Cu(Hte1P)]Br(3).6H(2)O, obtained from a highly acidic solution, the bromide anions are placed further away from the copper(ii) ion and the coordination environment (N(4)O) is thus square-pyramidal. In both structures, the protons are associated with non-coordinated phosphonate oxygen atoms.  相似文献   

18.
The new ligands R,R-trans-S,S'-bis[methyl(2'-quinolyl)]-1,2-dithiacyclohexane, cis-S,S'-bis[methyl(2'-quinolyl)]-1,2-dithiacyclohexane, and 1,6-bis(2'-quinolyl)-2,5-dithiahexane have been synthesized and their complexes with Cu(I) and Cu(II) prepared. The ligand/metal systems are bistable, as the complexes with copper in both its oxidation states are stable under the same conditions as solids and in solution. The crystal and molecular structure of [Cu(I)(1,6-bis(2'-quinolyl)-2,5-dithiahexane)]ClO(4) has been determined by X-ray diffraction and reveals that the complex is monomeric, with the ligand folding around the Cu(+) cation, imparting to it a tetrahedral coordination. UV-vis, MS-ESI, and NMR data indicate that the same is found for the Cu(I) complexes of all three ligands. Also, the Cu(II) complexes are monomeric, but with a square arrangement of the ligands around Cu(2+). On changing the oxidation state, the change in the geometrical arrangement is fast and complete in less than 80 ms, as demonstrated by cyclic voltammetry experiments. In the CV profiles, the oxidation and reduction events take place at separated E(ox) and E(red) values, with no return wave even at the fastest scan rates. In the E(ox)-E(red) interval (which ranges from 450 to 650 mV, depending on the ligand), the ligand/copper system can thus exist in one of its two states, depending on its history, and thus display electrochemical hysteretical behavior. The electrochemical cycle leading from the tetrahedral [Cu(I)(ligand)](+) to the square [Cu(II)(ligand)](2+) complex (and vice versa) is reversible and repeatable without degradation, as checked by coupled UV-vis-controlled potential coulometry experiments.  相似文献   

19.
A series of Fe(III), Co(II) and Cu(II) complexes of 8‐quinolinol were encapsulated into the supercages of zeolite? Y and characterized by X‐ray diffraction, SEM, N2 adsorption/desorption, FT‐IR, UV–vis spectroscopy, elemental analysis, ICP‐AES and TG/DSC measurements. The encapsulation was achieved by a flexible ligand method in which the transition metal cations were first ion‐exchanged into zeolite Y and then complexed with 8‐quinolinol ligand. The metal‐exchanged zeolites, metal complexes encapsulated in zeolite–Y plus non‐encapsulated homogeneous counterparts were all screened as catalysts for the aerobic oxidation of styrene under mild conditions. It was found that the encapsulated complexes always showed better activity than their respective non‐encapsulated counterparts. Moreover, the encapsulated iron complex showed good recoverability without significant loss of activity and selectivity within successive runs. Heterogeneity test for this catalyst confirmed its high stability against leaching of active complex species into solution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The novel binucleating ligand, 6,6 prime-methylene-bis(5 prime-amino-3 prime,4 prime-benzo-2 prime-thiapentyl)-1,11-diamino-2,3:9,10-dibenzo-4,8-dithiaundecane (H4L) was prepared and reacted with copper(II) salts in dry MeOH to yield mixtures of copper(I) and copper(II) complexes with Cl- and ClO-4 counter ions. The amine functions on the ligand release protons to form copper(I) complexes: (Cu2L)X2, where X=Cl−, ClO4-. The complexes were oxidized to (Cu2L)X4 with H2O2 in DMF; Cu(NO3)2 gave a different complex, [Cu2(H4L)(NO3)2](NO3)2, as regards proton releasing ability, coordination and oxidation number. Evidence for the structures of this new tetraamino-tetrathioether ligand and its copper complexes is provided by 1H-, 13C-n.m.r., mass, u.v.–vis., i.r. spectra, elemental analyses, molar conductivities and magnetic moments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号