首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Synchrotron radiation induced TXRF allows the nondestructive investigation of low Z contaminations on Si wafer surfaces at trace levels required by the semiconductor industry. The PTB (Physikalisch Technische Bundesanstalt) U180 undulator beamline at BESSY II, equipped with a plane grating monochromator ensuring an energy resolving power EE between 500 and 5000, can be operated either in wiggler mode for photon energies up to 1.7 keV to excite Al, Mg and Na efficiently, or in undulator mode, i.e. using one of the first odd U180 harmonics, to obtain intensive low energy radiation below 0.7 keV to excite carbon, nitrogen and oxygen. The specific feature of the beamline is its high spectral purity that allows for fundamental investigations. The TXRF wafer chamber of the Atominstitut was used for the experiments with a sidelooking Si(Li) detector with the wafer arranged vertically to take advantage of the linear polarization for background reduction. The energy dependence of the resonant Raman scattering, which is a limiter for the determination of Al at ultra trace levels excited with energies just below the Si absorption edge was studied as well as the influence of the incidence angle on the Raman peak. Droplet samples containing boron were measured and the detection limit of 3 ng determined. A single Carbon layer (5 nm) and a C–Ni–C multilayer sample on a Si wafer were characterized and it was shown that the thickness and density of these layers could be determined.  相似文献   

2.
The analysis of low Z elements, like Na and Al at ultra trace levels (<1010 atoms/cm2) on Si wafer surfaces is required by the semiconductor industry. Synchrotron radiation induced total reflection X-ray fluorescence analysis (SR-TXRF) is a promising method to fulfill this task, if a special energy dispersive detector with an ultra thin window is used. Synchrotron radiation is the ideal excitation source for TXRF of low Z elements due to its intense, naturally collimated and linearly polarized radiation with a wide spectral range down to low energies even below 1 keV. TXRF offers some advantages for wafer surface analysis such as non-destructive analysis and mapping capabilities. Experiments have been performed at the Stanford Synchrotron Radiation Lab (SSRL) using Beamline 3-4 (BL 3-4), a bending magnet beamline using white (<3 keV) and monochromatic radiation, as well as Beamline 3-3 (BL 3-3), using a crystal monochromator as well as a multilayer monochromator. A comparison of excitation–detection geometry was performed, using a side-looking detector with a vertically positioned wafer as well as a down-looking detector with a horizontally arranged wafer. The advantages and disadvantages of the various geometrical and excitation conditions are presented and the results compared. Detection limits are in the 100-fg range for Na, as determined with droplet samples on Si wafer surfaces.  相似文献   

3.
X-ray absorption fine structure (XAFS) experiments in fluorescence mode have been performed in total reflection excitation geometry and conventional 45°/45° excitation/detection geometry for comparison. The experimental results have shown that XAFS measurements are feasible under normal total reflection X-ray fluorescence (TXRF) conditions, i.e. on droplet samples, with excitation in grazing incidence and using a TXRF experimental chamber. The application of the total reflection excitation geometry for XAFS measurements increases the sensitivity compared to the conventional geometry leading to lower accessible concentration ranges. However, XAFS under total reflection excitation condition fails for highly concentrated samples because of the self-absorption effect.  相似文献   

4.
Organic contamination is starting to play an important role in the production and quality control of Si wafers. For the traceability of the source of contamination, information on the chemical binding conditions is very valuable. A near edge X-ray absorption fine structure (NEXAFS) investigation is the natural development of total reflection X-ray fluorescence (TXRF) analysis of the wafer surfaces able to solve the problem of speciation. The plane grating monochromator beamline for undulator radiation of the Physikalisch-Technische Bundesanstalt at the electron storage ring BESSY II, which provides photon energies between 30 eV and 1.9 keV for the specimen excitation, is an ideal excitation source for TXRF-NEXAFS experiments that require a high resolving power and a sufficient photon flux for trace analysis of low Z elements. The contaminants have been diluted and deposited as droplets on wafer pieces thoroughly cleaned after the cutting. The K edges of C, N, O have been examined. Some discrepancies have been found in the analysis of the same compounds in two different beamtimes; molecular orientation is pointed to as the cause for the difference in magnitude of the resonances. The unintentional contamination has been identified as mainly composed of aliphatic chains.  相似文献   

5.
In-fab analytical methods are of increasing interest for wafer monitoring in advanced semiconductor device manufacturing. In particular, an analytical method which allows non-destructive measurements of implant dose and surface roughness would be very beneficial. We investigated the capabilities of total reflection X-ray fluorescence spectrometry (TXRF) to determine implant dose and surface roughness. These advanced applications of TXRF can be used to monitor processes like implantation, rapid thermal annealing, and chemical mechanical polish. As implants in Si at implant energies of 2 keV, 10 keV and 50 keV were studied. Angle resolved TXRF measurements were performed with a commercial Rigaku 3750 system. The TXRF results were compared to secondary ion mass spectrometry (SIMS) measurements.  相似文献   

6.
 The actual detection limits of total reflection X-ray fluorescence (TXRF) are determined and compared to those of destructive physical analytical methods like secondary ion mass spectrometry (SIMS) and chemical methods like vapour phase decomposition in combination with inductively coupled plasma-mass spectrometry (VPD-ICP-MS). The elements Ca, Ti, Cr, Fe, Cu were analyzed on a Si wafer with 10 nm thermal oxide using TXRF and VPD-ICP-MS. The deviation of the TXRF and the VPD-ICP-MS results is less than 30%. The thickness, composition and density of a Co/Ti two-layer stack were determined using angle dependent total reflection and grazing incidence X-ray fluorescence (A-TXRF). The obtained data were compared with X-ray reflectometry (XRR) and energy filtered transmission electron microscopy (EFTEM). The agreement between TEM and A-TXRF is excellent for the determination of the thickness of the metal layers. From these results we conclude, that A-TXRF permits the accurate determination of composition, thickness and density of thin metallic layers. The results are discussed regarding detection efficiency, acquisition time, accuracy and reproducibility.  相似文献   

7.
The unique properties of synchrotron radiation, such as high incident flux combined with low divergence, its linear polarization and energy tunability, make it an ideal excitation source for total reflection X-ray fluorescence (TXRF) spectroscopy in order to non-destructively detect trace impurities of transition metals on Si wafer surfaces. When used with a detector suitable for the determination of low energy radiation this technique can be extended to the detection of low-Z elements, such as Al, Na and Mg. Experiments have been performed at SSRL Beamline 3-3, a bending magnet beamline using monochromatic radiation from a double multilayer monochromator. The wafer was mounted vertically in front of the detector, which was aligned along the linear polarization vector of the incoming synchrotron radiation. This configuration allows the detector to accept a large solid angle as well as to take advantage of the reduced scattered X-ray intensity emitted in the direction of the linear polarization vector. A comparison between droplet samples and spin coated samples was done, in order to compare the capabilities of vapor phase decomposition (VPD-TXRF) with conventional SR-straight-TXRF. Detection limits in the range of 50 fg corresponding to 2E10 atoms/cm2 have been obtained for Na. The spin coated samples, prepared from solutions containing an equal amount of Na, Mg and Al showed an unexpected result when performing a scan of the angle of incidence of the incoming X-rays suggesting a different adsorption behavior of the elements in a multielement solution on the wafer surface. The observation of this behavior is important because the spin coating technique is the standard method for the preparation of surface standards in semiconductor quality control. This effect could be characteristic of the Na, Mg, Al solution used, but the angle dependence of the fluorescence signal of a standard should always be investigated before using the standard for calibration of the apparatus and quantification.  相似文献   

8.
TXRF is routinely used and suited to inspect Si wafer surfaces for possible impurities of metallic elements at the level of pg and below. Lightweight, compact sized, high-resolution Silicon drift detectors (FWHM=148 eV at 5.9 keV) electically cooled and with high throughput are ideally as the new spectrometer and for clean room application. A KETEK 5 mm2 Si drift detector was compared with a NORAN 80 mm2 SiLi in a previously commercially available ATOMIKA 8010 wafer analyzer. Results are presented and show that almost the same detection limits for both detector types were achieved analyzing a droplet sample containing 1 ng Ni on a Si wafer. Also, the performance to detect low Z elements like Na, excited with monochromatic Cr K radiation in a vacuum chamber was tested and detection limits of 600 pg obtained.  相似文献   

9.
There are several TXRF spectrometers commercially available for chemical analysis as well as for wafer surface analysis, but there is up to now no spectrometer for chemical analysis available that allows to measure samples under vacuum conditions. Simply a rough vacuum of 10−2 mbar for the sample environment reduces the background due to scattering from air, thus to improve the detection limits. The absorption of low energy fluorescence radiation from low Z elements is reduced and therefore extends the elemental range to be measured down to Na. Finally evacuation of the chamber removes the Ar K-lines from the spectrum.The new vacuum chamber for TXRF named WOBISTRAX is equipped with a 12-position sample changer, a 10-mm2 silicon drift detector (SDD) with an 8-μm Be entrance window and electrical cooling by Peltier effect, so no LN2 is required. The chamber was designed to be attached to a diffraction tube housing. WOBISTRAX can be operated with a 3 kW long fine focus Mo-X-ray tube and uses a Mo/Si multilayer for monochromatization. The modified software is performing the motion control between sample changer and MCA features.The performance is expressed in terms of detection limits which are 700 fg Rb for Mo Kα excitation with 50 kV, 40 mA excitation conditions, 1000 s livetime. Using a Cr-X-ray tube for excitation of Al the achieved detection limits are 52 pg. So it could be shown that with the same measuring chamber and using an SDD with 8 μm Be window and a Cr-tube for excitation, low Z elements can be also measured with good detection limits.  相似文献   

10.
Within the framework of a collaborative project, it is shown that commercial total reflection X-ray fluorescence (TXRF) systems used in laboratories can easily be upgraded with a silicon drift detector (SDD). SDDs have advantages when used with fully automatized wafer analyzers working under cleanroom conditions, because no liquid nitrogen is required as they are electrically cooled. The goal of this work was the integration of a KETEK 10 mm2 SDD in an ATOMIKA 8030W wafer analyzer with special attention to maintain the high degree of automation of the system. An electronic device was designed to establish communication between the SDD and the TXRF electronic control system. The adapted system was tested and compared with the original setup using an 80 mm2 Si(Li) detector. Multielement droplet samples on silicon wafers were analyzed and the results showed two times better detection limits for the Si(Li) detector for 1000 pg Ni in comparison to the SDD. Additionally, a RADIANT 50 mm2 SDD (VORTEX) was tested which showed identical detection limits compared to the 80 mm2 Si(Li) detector.  相似文献   

11.
The aim of this work was to analyze the composition of river waters and to study their quality by detecting possible contaminants. The samples were taken at 32 points of the Suquía River in its stream across the city of Córdoba (in the Province of Córdoba, Argentina). The samples were analyzed with total reflection X-ray fluorescence (TXRF) using beam guides. Beam guides made of two Si plate reflectors were used as sample carriers and to guide the X-ray photons to the sample; the measurements were taken using the characteristic configuration that ensures the best excitation and detection conditions (in TXRF). The analyses were carried out by preconcentration of the water samples and by adding an internal standard (Gallium); small amounts of samples (30 μl) were deposited on the Si reflector plate and they were then analyzed in the total reflection regime. Spectra were analyzed with standard methods using conventional programs. The results show interesting behaviors of the concentration of trace elements along the river: elements of low atomic number (such as Ca, Cl, S, K) present higher concentrations as compared to high Z elements (such as Fe, Zn, Br, Sr); the concentrations of light elements follow a similar behavior along the stream, the same situation is observed in the set of elements with high atomic number. Some samples present high concentrations in certain elements indicating possible sources of contamination.  相似文献   

12.
Thin films of novel dielectric and ferroelectric materials, such as barium strontium titanate (BST) and strontium bismuth tantalate (SBT), which are scheduled for short-term implementation into standard microelectronic device technology, contain elements like Bi, Sr and Ba which may involve risks with regard to device yield and reliability. Therefore, the high-temperature behavior of bismuth, strontium and barium impurities on Si (100) substrates was studied. Intentionally contaminated Si substrates were annealed at 1000°C under different ambient (inert, oxidizing) by rapid thermal annealing (RTA) or in a furnace and analyzed by total reflection X-ray fluorescence spectrometry (TXRF), vapor phase decomposition/TXRF (VPD/TXRF) and electrolytic metal tracer (Elymat) technique. Ba and Sr are incorporated in the existing or growing oxide during rapid thermal annealing (RTA). Cross-contamination due to gas phase transport may occur in the case of Bi, in particular under N2 atmosphere, but is of no concern in the case of Ba and Sr. All three contaminants do not exert an influence on the minority carrier lifetime on their own. The results illustrate that TXRF and VPD/TXRF are appropriate techniques for such studies.  相似文献   

13.
Total reflection X-ray fluorescence spectrometry (TXRF) has been applied for trace elemental analysis of small glass fragments. A small glass sample (a fragment with weight less than 0.5 mg) was decomposed by 100 microg of HF/HNO3 acid; the material was condensed to 10 microl and was dried on a Si wafer. Since the size of the dried residue on the Si wafer was less than 1 cm in diameter, an incident X-ray beam with about 1 cm in width could effectively excite elemental components in such a small glass fragment. The precision of the present technique was checked by analyzing the glass fragments (<0.5 mg) from NIST SRM612; the relative standard deviations (RSD) of less than 8.1% were achieved for elemental ratios that were normalized by Sr. Fragments (<0.5 mg) obtained from 23 figured sheet glasses were used as samples for estimating the utility of this technique to forensic discrimination. Comparison of five elemental ratios of Ti/Sr, Mn/Sr, Zn/Sr, Rb/Sr, and Pb/Sr calculated from X-ray fluorescence spectra was effective in distinguishing glass fragments that could not be differentiated by their refractive indexes (RI).  相似文献   

14.
Sensitive and accurate characterization of films thinner than a few nm used in nanoelectronics represents a challenge for many conventional production metrology tools. With capabilities in the 1010 at/cm2, methods usually dedicated to contamination analysis appear promising, especially Total-reflection X-Ray Fluorescence (TXRF). This study shows that under usual configuration for contamination analysis, with incident angle smaller than the critical angle of the substrate, TXRF signal saturation occurs very rapidly for dense films (below 0.5 nm for HfO2 films on Si wafers using a 9.67 keV excitation at 0.5°). Increasing the incident angle, the range of linear results can be extended, but on the other hand, the TXRF sensitivity is degraded because of a strong increase of the measurement dead time. On HfO2 films grown on Si wafers, an incident angle of 0.32° corresponding to a dead time of 95% was used to achieve linear analysis up to 2 nm. Composition analysis by TXRF, and especially the detection of minor elements into thin films, requires the use of a specific incident angle to optimize sensitivity. Although quantitative analyses might require specific calibration, this work shows on Co–based films that the ratio between minor elements (W, P, Mo) and Co taking into account their relative sensitivity factors is a good direct reading of the composition.  相似文献   

15.
Total reflection X-ray fluorescence (TXRF) is essential for 300-mm silicon wafer production and fabrication of semiconductor devices. The 300-mm TXRF enables non-destructive contamination analysis on wafers for process development and process control. The TXRF system shows a very stable continuous operation, which allows accurate trace and ultra trace analysis on the silicon surface. It is equipped with two excitation sources covering the requirements of very sensitive measurement and wide element range. The TXRF is a key technology for contamination control during wafer reclaim. For this purpose we show that the system is able to examine the wafers during different processing states of reclaim. The system sensitivity is influenced by the surface of the wafer. For important processing steps, e.g. double side polishing, the sensitivity is as good as for measurements on hazefree polished wafers. We show with TXRF that cross-contamination with copper during double side polishing is suppressed.  相似文献   

16.
Vapor phase treatment (VPT) is a pretreatment with hydrofluoric acid vapor to raise the sensitivity of total reflection X-ray fluorescence spectroscopy (TXRF) for trace metal analysis on silicon wafers. The International Organization for Standardization/Technical Committee 201/Working Group 2 (ISO/TC201/WG2) has been investigating the method to analyze 109 atoms/cm2 level of metallic contamination on the silicon wafer surface. Though VPT can enhance the TXRF signal intensity from the metallic contamination, it has turned out that the magnitude of the enhancement varies with the type of methods and the process conditions. In this study, approaches to increase TXRF intensity by VPT are investigated using a fuming chamber in an automated VPD instrument. Higher signal intensity can be obtained when condensation is formed on the sample surface in a humidifying atmosphere and with a decreasing stage temperature. Surface observations with SEM and AFM show that particles with ~ 4 μm in diameter are formed and unexpectedly they are dented from the top surface level.  相似文献   

17.
To improve the achievable detection limits of low Z element with TXRF, a commercially available 2 kW X-ray tube (SEIFERT Type SF 60, Ahrensburg) with a 40 μm×8 mm fine focus has been modified. A windowless X-ray tube has been realized by removing the Be window out of the tube. The original Cu anode block has been changed to Al, because of sputtering reasons. A 4–6 μm thick pure silicon layer has been sputtered on the Al substrate. The geometry of the anode has been constructed in a specific way in order to optimize the photon flux of the X-ray beam concerning self-absorption and brilliance. Direct vacuum tight coupling to the measuring chamber and operation at 10−6 mbar vacuum was successfully shown. First measurements have been perfomed with a detector suitable for the detection of low energy photons in total reflection XRF geometry. Sodium has been analyzed on a Si-wafer surface and detection limits of 36 pg (corresponds to 3E9 atoms/cm2) have been achieved and are 10 times better than the detection limits for Na excited with a 1.3 kW Cr standard tube of 330 pg. With this developed X-ray tube the detection limits required by the Semiconductor industry for Si wafer surface contamination quality control are fulfilled.  相似文献   

18.
The multielement trace analytical method ‘total reflection X-ray fluorescence’ (TXRF) has become a successfully established method in the semiconductor industry, particularly, in the ultra trace element analysis of silicon wafer surfaces. TXRF applications can fulfill general industrial requirements on daily routine of monitoring wafer cleanliness up to 300 mm diameter under cleanroom conditions. Nowadays, TXRF and hyphenated TXRF methods such as ‘vapor phase decomposition (VPD)-TXRF’, i.e. TXRF with a preceding surface and acid digestion and preconcentration procedure, are automated routine techniques (‘wafer surface preparation system’, WSPS). A linear range from 108 to 1014 [atoms/cm2] for some elements is regularly controlled. Instrument uptime is higher than 90%. The method is not tedious and can automatically be operated for 24 h/7 days. Elements such as S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Sn, Sb, Ba and Pb are included in the software for standard peak search. The detection limits of recovered elements are between 1×1011 and 1×107 [atoms/cm2] depending upon X-ray excitation energy and the element of interest. For the determination of low Z elements, i.e. Na, Al and Mg, TXRF has also been extended but its implementation for routine analysis needs further research. At present, VPD-TXRF determination of light elements is viable in a range of 109 [atoms/cm2]. Novel detectors such as silicon drift detectors (SDD) with an active area of 5 mm2, 10 mm2 or 20 mm2, respectively, and multi-array detectors forming up to 70 mm2 are commercially available. The first SDD with 100 mm2 (!) area and integrated backside FET is working under laboratory conditions. Applications of and comparison with ICP-MS, HR-ICP-MS and SR-TXRF, an extension of TXRF capabilities with an extremely powerful energy source, are also reported.  相似文献   

19.
In this work, theoretical calculations of detection limits for different total reflection techniques of X-ray fluorescence analysis are presented. Calculations include grazing incidence (TXRF) and gracing emission (GEXRF) conditions. These calculations are compared with detection limits calculated for conventional X-ray fluorescence (XRF). In order to compute detection limits, Shiraiwa and Fujino's model was used to calculate X-ray fluorescence intensities. This model makes certain assumptions and approximations to achieve the calculations, especially in the case of the geometrical conditions of the sample, and the incident and takeoff beams. Nevertheless, the calculated data of detection limits for conventional XRF and total-reflection XRF show a good agreement with previous results. The model proposed here allows us to analyze the different sources of background and the influence of the excitation geometry, which contribute to a better understanding of the physical processes involved in the XRF analysis by total reflection. Finally, a comparison between detection limits in total-reflection analysis at grazing incidence and at grazing emission is carried out. Here, a good agreement with the theoretical predictions of the Reciprocity Theorem is found, showing that, in theory, detection limits are similar for both techniques.  相似文献   

20.
The linear polarization of synchrotron radiation (SR) in the orbital plane leads to a background reduction in total reflection X-ray fluorescence (TXRF) analysis if a side-looking detector is used. The optimum orientation of the sample carrier in a SR-TXRF experiment, however, is determined by a trade-off between the exploitation of the linear polarization, the efficiency of excitation and the solid angle of detection and depends on the nature and size of the sample. SR-TXRF measurements on different sample types and using different reflector orientations have been carried out at the Hamburger Synchrotronstrahlungslabor bending magnet beamline L. A NIST standard water sample, a steel sample and an oil standard were analyzed with both a horizontal and a vertical sample carrier orientation. Strongly scattering samples led to lower detection limits with a horizontal reflector whereas weakly scattering samples showed lower detection limits with a vertical reflector configuration. On an intentionally contaminated wafer absolute detection limits of 6.6 fg for Ni could be extrapolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号