首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文给出了采用表面增强傅里叶变换拉曼光谱法测定的鸟嘌呤、鸟苷及其甲基化衍生物的拉曼散射。实验结果表明,采用了近红外波长的拉曼散射及傅里叶变换技术成功地获得鸟嘌呤、鸟苷及其甲基化衍生物的水溶液在较低浓度下(0.1~0.01mg/L)不受荧光干扰的拉曼光谱图,其频率与相对强度分布表明,水溶液状态下吸附在Ag膜上的鸟嘌呤(苷)及其衍生物结构中的有关振动谱带r(C=O)、NH2和杂环上的N获得显著增强。本文对水溶液鸟嘌呤(苷)及其衍生物的FT-Raman谱带的归宿进行了讨论。  相似文献   

2.
钮洋  刘清海  杨娟  高东亮  秦校军  罗达  张振宇  李彦 《化学学报》2012,70(14):1533-1537
合成了碳纳米管和金纳米颗粒的复合物, 测量了水溶液相中复合物的表面增强拉曼光谱, 结果表明, 碳纳米管的巯基化修饰可以提高碳纳米管与金纳米颗粒复合的效率, 随着金纳米颗粒负载量的增加, 碳纳米管的拉曼信号逐渐增强. 加入己二胺分子可以减小金纳米颗粒之间的距离使表面增强效应更显著, 碳纳米管的拉曼光谱得到进一步的增强. 还可进一步在复合体系中加入对巯基苯胺和罗丹明B等小分子拉曼探针, 利用金纳米颗粒的表面增强效应, 这种多元复合体系有望作为多通道拉曼成像探针材料.  相似文献   

3.
A series of SERS-active nanostructures were produced by exposing a freshly deposited silver film (fabricated to be as free from roughness as practicable) to a solution containing a mixture of 1-decanethiol (m) and 1,9-nonanedithiol (d) of varying concentrations of m to d, then allowing colloidal silver nanoparticles to interact with the surface. Silver nanoparticles were found to bind exclusively to films which were prepared from solutions with a nonzero concentration of the dithiol implying that the nanoparticles were tethered to the silver surface by the dithiol with one of the thiolate groups bound to the nanoparticle and the other to the silver film. Intense SERS spectra were observed even from samples in which the m/d concentration ratio was so large that the adsorbed molecules in the vicinity of only approximately 8 +/- 3 nanoparticles were illuminated by the diffraction-limited focused laser beam. At such high dilution, the molecules (numbering at most approximately 330) residing in the SERS "hot spots" associated with the approximately 8 nanoparticles consisted primarily of m (although, of course, for each nanoparticle, at least one molecule in the hot spot had to be d to serve as the linker). This was corroborated by the SERS spectra. An analysis is presented, which accounts for the fact that as the concentration ratio of m/d increases, the SERS intensity associated with bands belonging to m first increases to a maximum then decreases. The nanoparticle-metal film system presented here is a simple embodiment of a more general range of SERS-active sensing platforms in which a molecular tether is used to create a SERS hot spot that (although nanosized) is large enough to accommodate analyte molecules that cannot themselves function as linkers, which are subsequently detected by SERS at the few-molecule level.  相似文献   

4.
Surface-enhanced Raman scattering (SERS) spectrum of very good quality of "silver nano-particles/sample molecules/silver film" system was reported by nesting the sample molecules to the gap of silver nano-particles and silver film, indicating that "silver nano-particles/sample molecules/silver film" is a highly SERS-active system. Not only was the number of the vibrational modes increased, but also were the frequencies of Raman bands up and down shifted. It is difficult to separate the contributions of the electromagnetic and chemical mechanisms to the great enhancement of the Raman signal. The shift by 5-30cm(-1) of the SERS bands and the change in their relative intensity compared with the ordinary Raman spectrum indicate the chemisorption of the sample molecules on the silver-modified silver surface. Furthermore, the silver nano-particles modified on the rough silver film surface play an important role in magnifying the surface local electric field near the silver surface through resonant surface plasmon excitation. From the rich information, obtained from high-quality SERS of PHBA in ternary system, we inferred that PHBA molecules in ternary system adsorb onto the metal surfaces through carboxyl at a perpendicular orientation.  相似文献   

5.
SERS from phthalazine adsorbed on an Ag electrode was investigated under several conditions of applied voltage and solution concentration. Spectral assignments of the Raman bands were successfully performed and two differently oriented adsorbates, i.e. flat and end-on species, were identified. The contribution of the image field to the SERS intensity was considerable.  相似文献   

6.
在简述近年来电化学体系中表面增强喇曼散射(SERS)活性位置研究的实验结果和有关论述后, 着重报道作者在Ag/KCl/六氢吡啶体系中, Ag-Cl振动峰和六氢吡啶诸振动峰的强度, 在一定电位范围内电极被施加负脉冲电位后的同步下降, 以及采用氧化还原循环(ORC)处理得到同步恢复等新的实验结果, 并对上述体系中表面络合物的构成及其在SERS中的作用作了进一步的论证。  相似文献   

7.
表面增强拉曼光谱研究小檗碱与DNA的相互作用   总被引:8,自引:0,他引:8  
用表面增强拉曼光谱研究了小檗碱(BER)与小牛胸腺DNA(ct DNA)的相互作用,并对重要谱峰进行了归属。在Ag胶体系中,小檗碱分子的拉曼信号增强显著,表明小檗碱阳离子键合到银胶粒子的表面。加入ct NA之后,小檗碱分子的大部分SERS带的强度进一步增加,而仅有少数几个带的信号强度趋于消失,可能是小檗碱分子的异喹啉部分键合到DNA的小沟槽,小檗碱与DNA的相互作用模式主要是通过静电力及疏水相互作用,吸收光谱表明,Ag胶体系的存在并未改变小檗碱分子与DNA的相互作用模式。  相似文献   

8.
A surface-enhanced Raman spectroscopic (SERS) study of pyrazine adsorbed on roughened Rh electrodes was performed. Potential and concentration effects on the adsorption behavior of pyrazine were investigated. The SER spectra display four pairs of overlapping bands with the relative intensity of each pair being highly potential dependent, which has not been observed on other metals. The orientation change of the adsorbed pyrazine from the end-on to N/pi bonded edge-on configuration is proposed to account for this potential-dependent relative intensity change. This hypothesis is further supported by the SERS results obtained at different pyrazine concentrations. In conjunction with the orientation effect, the interaction of Rh with hydrogen and oxygen generated at different potentials has a great influence on the adsorption configuration of pyrazine.  相似文献   

9.
We have recorded surface-enhanced Raman (SER) spectra of two different classes of compounds, cationic dyes and organic acids, and studied their chloride ion effects on the surface-enhanced Raman scattering (SERS) activities of the silver solution. For the positive charge dyes, rhodamine 6G (R6G) and 1,1'-dimethyl-2,2'-cyanine iodide (DECI), no SERS could be observed without the addition of chloride ions because of lack of the electrostatic interaction between the dye species and the silver particles in the silver solution. The chloride ions served to enlarge silver particles and to contribute the existence of the surface active sites, making the silver solution SERS active to the dye samples. Surface-enhanced resonance Raman scattering (SERRS) intensity of the dye molecules increased with the chloride ion concentration. After reaching a maximum intensity, a Cl- quenching effect on the intensity took place. For the organic acids, benzoic acid and p-aminobenzoic acid (PABA), SERS could be observed without the coexistence of chloride ions. The intensity of the Raman scattering did not vary significantly in the presence of small amount of chloride ion. At high Cl- concentration, quenching SERS intensity began to take effect.  相似文献   

10.
Surface-enhanced Raman scattering (SERS) of p-aminothiophenol (PATP) molecules adsorbed onto assemblies of Au(core)/Cu(shell) nanoparticles is reported. We compare it with the SERS spectrum of PATP adsorbed onto gold nanoparticles: both the absolute and relative scattered intensities of various bands in the two spectra are very different. The difference in relative intensity can be ascribed to chemical effects; the chemical enhancement ratio of the two substrates is approximately 3-5. A theoretical analysis based on a charge-transfer model is carried out, which yields a consistent result and shows that the difference in chemical enhancement is mainly due to the state densities and Fermi levels of the substrates. The difference in absolute intensity originates from electromagnetic (EM) enhancement. EM enhancement of Au(core)/Cu(shell) nanoparticles is unlike that of single-component gold or copper SERS-active substrates. The core/shell particle size for optimal enhancement is about 20 nm in the case of a 632.8 nm incident laser (the size ratio of the core and shell layers is about 0.6).  相似文献   

11.
Raman spectroscopic studies of three isomeric pyridinic carboxylic acids, viz. picolinic, nicotinic and iso-nicotinic acid in solid state, in aqueous solution and in silver hydrosol, in the frequency range 900–1750 cm−1, have been made. Assignments of the observed bands have been proposed in relation to the molecular forms present in solid state and in solution. Different degrees of intensity enhancements of the Raman bands in surface-enhanced Raman scattering (SERS) have been observed in all the three isomeric molecules. In iso-nicotinic acid, the intensity enhancement has been found to be minimum. Comparisons of Raman spectra in aqueous solution with those due to SERS in silver sol indicate that picolinic and nicotinic acid adsorb perpendicularly to the sol surface whereas in iso-nicotinic acid it occurs via donation of a π-electron of the aromatic ring, i.e. the plane of the ring lies parallel to the surface of the sol.  相似文献   

12.
Quantitative analysis is a great challenge in surface‐enhanced Raman scattering (SERS). Core‐molecule‐shell nanoparticles with two components in the molecular layer, a framework molecule to form the shell, and a probe molecule as a Raman internal standard, were rationally designed for quantitative SERS analysis. The signal of the embedded Raman probe provides effective feedback to correct the fluctuation of samples and measuring conditions. Meanwhile, target molecules with different affinities can be adsorbed onto the shell. The quantitative analysis of target molecules over a large concentration range has been demonstrated with a linear response of the relative SERS intensity versus the surface coverage, which has not been achieved by conventional SERS methods.  相似文献   

13.
The FT-Raman and resonance Raman scatterings of colloidal silver or gold formed in the presence of a nonionic surfactant, Surfynol 465, were studied. The intensity of Raman scattering of colloidal solution was strongly affected by the power of laser for excitation. At the low power, the intensity of scattering and the spectrum of colloidal solution were normal. However, at the high power, the intensity of Raman scattering anomalously increased over the whole frequency region, suggesting the surface enhanced Raman scattering (SERS) on colloidal silver or gold. And in the Raman spectra new bands were found in addition to bands of starting materials. Through the assignment of new bands, the working mechanism of Surfynol 465 for the formation of colloidal silver or gold was discussed.  相似文献   

14.
用化学法在抛光的石英玻璃片上沉积银岛膜,并在该膜上进行孔雀石绿分子的表面增强拉曼散射研究,着重考察了激发波长、电解质浓度以及酸度对SERS的影响。  相似文献   

15.
The influences of concentration, halide anions and pH on the surface-enhanced Raman scattering (SERS) of riboflavin adsorbed on borohydride-reduced silver colloids were studied. The optimum concentration for the SERS of riboflavin is 10(-6)mol/L while the SERS enhancement varies for different modes. The addition of 0.2mol/L halide (NaCl, NaBr, and NaI) aqueous solutions, leads to a general decrease of the SERS intensity and a change of spectral profile of riboflavin excited at 514.5nm. Riboflavin interacts with the silver surface possibly through the CO and N-H modes of the uracil ring. The SERS spectra of riboflavin were recorded in the 3.4-11.6 pH range. By analyzing several SERS marker bands, the protonated, deprotonated or the coexistence of both molecular species adsorbed on the colloidal silver particles was proved.  相似文献   

16.
Using 1064 nm excited surface-enhanced Raman spectroscopy (SERS) a well known intercalator, ethidium bromide (EB), and a structurally related compound, 4-methyl-2,7-diamino-5,10-diphenyl-4,9-diazapyrenium hydrogensulfate (ADAP), have been studied. Concentration dependent SERS spectra of both aromatic species (1 × 10−7-5 × 10−5 M) indicated existence of dimeric associates at high concentration and an equilibrium shift towards monomers with a concentration decrease. Interactions of the intercalating molecules with DNA have been studied for various intercalator/DNA (base pair) molar ratios ranging from 10/1 to 1/10. In colloidal samples containing an intercalator in excess relative to DNA binding sites (from 10/1 to 2/1) enhancement of the Raman scattering gradually weakened, indicating a decrease in a number of free molecules adsorbed on the metal surface due to binding with DNA. At the drug/DNA ratios of 1/2 and 1/5 weaker but observable SERS bands indicated insertion of the drug molecules between the base pairs (intercalation strongly diminished interaction of the drug molecules with metal surface) as well as non-intercalative binding of the drug molecules able to stay in closer contact with a metal surface. A total intercalation of EB and ADAP molecules (intercalator/DNA of 1/7 and 1/10) resulted in almost complete loss of the SERS signal. Intensity of the SERS spectra of the intercalator/DNA complexes relative to the SERS intensity of the free intercalating molecules diminished to a lesser degree for ADAP/DNA than for EB/DNA. The obtained difference was attributed to a larger aromatic surface of the ADAP molecules which, although intercalated, could be positioned near the enhancing nanoparticles, unlike the smaller EB molecules which were deeply inserted within the DNA helix.  相似文献   

17.
Gold and silver electromagnetic nanoresonators covered by a thin layer of platinum are often used to study adsorption of various molecules on “model platinum surfaces” with surface-enhanced Raman scattering (SERS) spectroscopy. In this contribution spectra of pyridine adsorbed on films formed from core–shell Ag@Pt and Ag@Ag–Pt nanoparticles and pure Pt or Ag nanoparticles were measured using a confocal Raman microscope. The SERS spectra of pyridine adsorbed on alloy Ag@Ag–Pt nanoparticles could not be obtained as a linear combination of spectra measured on pure Ag and Pt surfaces. In other words, for silver electromagnetic nanoresonators covered by platinum there is no simple correlation between the “quality” of the deposited Pt layer and the relative intensity of SERS bands characteristic for adsorbate interacting with silver. The SERS spectra accumulated from various places of a film formed from Ag@Pt or Ag@Ag–Pt nanoclusters may differ significantly. Using Ag@Pt nanoparticles with practically negligible amount of Ag on the surface (as per the stripping measurement), it is possible to record SERS spectrum in which the contribution characteristic for pyridine adsorbed on the Ag surface is well visible. It means that, even for macroscopic samples of core–shell Ag–Pt nanoparticles, averaging of many spectra measured at various locations of the sample should be carried out to characterize reliably their properties.  相似文献   

18.
Achiral dyes in isotropic (acetyl)(ethyl)cellulose (AEC) solutions display no induced CD signals irrespective of acetyl content, polymer concentration or dye content. When dissolved in anisotropic AEC solutions, the dye molecules show strong induced CD bands that disappear when the phases are heated above the anisotropic/isotropic phase transition temperature. The liquid crystal induced circular dichroism (LCICD) spectra for the dyes in a series of well-characterized AEC mesophases, whose handedness depends on solvent and acetyl content, reveal that the sign of the LCICD signal is determined by the supramolecular structural features of the host matrices. Thus, acridine orange (AO) dissolved in a left-handed liquid crystalline AEC solution displays a negative LCICD whereas a positive LCICD was observed when the AO is dissolved in a right-handed AEC mesophase. The sign and intensity of the LCICD signals change with acetyl degree of substitution, solvent and temperature. In all cases, changes in sign of the CD peak correlated with changes in handedness of the chiral nematic structure, and the intensity of the CD peak increased with increasing chiral nematic pitch for a given solvent and polymer concentration. Induced circular dichroism is thus a useful probe of chiral nematic structure in these systems.  相似文献   

19.
The emission spectra of styrene (ST)–triethylamine (TEA) systems were measured under steady-state illumination conditions in some tetrahydrofuran (THF)–protic solvent mixtures. The fluorescence spectrum of the ST–TEA system in THF consists of two bands (band A at 304 nm (fluorescence of ST) and band B at 460 nm (emission from an exciplex)). The intensity of band A increased and that of band B decreased with increasing amounts of protic solvents in THF–protic solvent mixtures. The increase in the intensity of band A was explained by the decrease in the concentration of free amine owing to the hydrogen-bonding interaction (or protonation) between TEA and protic solvents. The decrease in the intensity of band B was considered to be caused by the decrease in the concentration of free amine upon the addition of protic solvents and the enhanced conversion of the exciplex to an ion pair with increasing solvent polarity. The polar effect was expressed as a function of the relative permittivity of the solution.  相似文献   

20.
表面增强拉曼散射峰相对强度与温度的关系(英文)   总被引:1,自引:0,他引:1  
黄岭  沈健  郁清  孟庆金 《电化学》2001,7(2):180-184
用近红外傅立叶变换表面增强拉曼散射技术研究了 2 ,5_二巯基_1,3,4_噻二唑 (DMTD)在银表面的吸附与键合行为 .峰的相对强度随温度呈现出规律性的变化 ,表明DMTD异构体的相互转变或表面膜中DMTD分子的重新排布  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号