首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We analyse the low temperature subband electron mobility in a Ga0.5In0.5P/GaAs quantum well structure where the side barriers are delta-doped with layers of Si. The electrons are transferred from both the sides into the well forming two dimensional electron gas (2DEG). We consider the interface roughness scattering in addition to ionised impurity scattering. The effect of screening of the scattering potentials by 2DEG on the electron mobility is analysed by changing well width. Although the ionized impurity scattering is a dominant mechanism, for small well width the interface roughness scattering happens to be appreciable. Our analysis can be utilized for low temperature device applications.   相似文献   

2.
We employ a magnetocapacitance technique to study the spectrum of the soft two-subband (or double-layer) electron system in a parabolic quantum well with a narrow tunnel barrier at the center. In this system, when unbalanced by gate depletion, two sets of quantum oscillations are observed at temperatures T≳30 mK: one originates from the upper electron subband in the closer-to-the-gate part of the well, and the other indicates the existence of common gaps in the spectrum at integer fillings. For the lowest filling factors υ=1 and υ=2, both the presence of a common gap down to the point of the one-to two-subband transition and their nontrivial magnetic field dependences point to magnetic-field-induced hybridization of electron subbands. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 8, 563–568 (25 April 1998) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

3.
We have addressed the dependence of quasi-two-dimensional electron spin dephasing time on the electron gas density in a 17-nm GaAs quantum well using the time-resolved magneto-optical Kerr effect. A superlinear increase in the electron dephasing time with decreasing electron density has been found. The degree of electron spin relaxation anisotropy has been measured and the dependence of spin-orbit splitting on electron gas density has been determined.  相似文献   

4.
5.
王立飞  杨光参 《中国物理 B》2009,18(6):2523-2528
This paper studies the quantum dynamics of electrons in a surface quantum well in the time domain with autocorrelation of wave packet. The evolution of the wave packet for different manifold eigenstates with finite and infinite lifetimes is investigated analytically. It is found that the quantum coherence and evolution of the surface electronic wave packet can be controlled by the laser central energy and electric field. The results show that the finite lifetime of excited states expedites the dephasing of the coherent electronic wave packet significantly. The correspondence between classical and quantum mechanics is shown explicitly in the system.  相似文献   

6.
ABSTRACT

We study the effect of the external electric field Fext on the low-temperature electron mobility μ in an asymmetrically doped AlxGa1-xAs based V-shaped double quantum well (VDQW) structure. We show that nonlinearity of µ occurs under double subband occupancy on account of intersubband effects. The field Fext alters the VDQW potential leading to transfer of subband wave functions between the wells, which affects the scattering potentials and hence μ. In the VDQW structure, due to the alloy channel layer, the alloy disorder (Al-) scattering happens to be significant along with the ionised impurity (Imp-) scattering. The non-linear behaviour of μ is because of μImp, while the overall magnitude of μ is mostly due to μAl. The increase of difference in the doping concentrations of the outer barriers increases the nonlinearity of μ. The oscillatory character of μ is amended by varying the width of the well and barrier and also the height of the VDQW. Our results can be used to study VDQW based nanoscale field effect transistor structures.  相似文献   

7.
8.
《Physics letters. A》2002,305(6):427-432
The nonstationary electron dynamics in a quantum well lattice is considered. We investigate the influence of quasi-constant electric field applied to the system in addition to variable electric field periodic in time. It is shown that various types of controllable motion of an electron density in the lattice can be realized.  相似文献   

9.
王海霞  殷雯 《物理学报》2008,57(5):2669-2673
采用Gurvitz等人直接求解薛定谔方程的方法并结合数值计算,分析了驱动频率对周期耦合量子阱体系的电流的影响.结果表明:当驱动频率小于耦合量子阱间的能级差时,随着驱动频率的增大,系统平衡时的电流增加,当驱动频率大于耦合量子阱间能级差时,随着驱动频率的增大,平衡时的电流减小.这样,通过控制外场驱动频率来达到控制电流的目的. 关键词: 量子阱 驱动频率 电流  相似文献   

10.
11.
We consider a two dimensional electron gas confined to a modulation doped AlGaN/GaN quantum well and study the dependence of low field mobility on various parameters such as composition, well width, remote impurity and interface roughness as a function of temperature. GaN is assumed to be in the zincblende structure. Acoustic and optical phonon, ionized remote impurity and interface roughness scatterings are taken into account in mobility calculations. The scattering rates are calculated using the self-consistently calculated wave functions obtained from the numerical solution of Poisson and Schr?dinger equations. Also found from the self-consistent solutions are the potential profile at the junction, the energy levels in the well and electron concentrations in each level. Ensemble Monte Carlo method is used to find the drift velocities of the two dimensional electrons along the interface under an applied field. The mobility of two dimensional electrons is obtained from the drift velocity of electrons. It is found that while remote impurity scattering is very effective for small values of spacer layer and doping concentrations, increasing Al concentration reduces the mobility of electrons. The effect of surface roughness, on the other hand, on mobility is almost independent of well width. The results of our simulations are compatible with the existing experimental data.  相似文献   

12.
13.
We use tunnel current spectroscopy to investigate the quantum states of two GaAs quantum wells coupled by a low (100 meV) (AlGa)As tunnel barrier. A high tilted magnetic field is used to generate strongly chaotic electron motion in the two wells which act as coupled chaotic ‘stadia'. The effect of the tunnel barrier on the dynamics of the system depends on the magnitude of the applied bias voltage V. For V375 mV, the central potential barrier acts as a perturbation which modifies the trajectories of selected periodic orbits in the quantum well. Scattering off the central barrier also generates new periodic orbits involving multiple collisions on all three barriers. These orbits ‘scar' distinct sets of eigenstates which generate periodic resonant peaks in the current–voltage characteristics of the device. When the device is biased such that the injected electrons just surmount the central barrier, our calculations reveal novel hybrid scarred states with both stable and chaotic characteristics.  相似文献   

14.
We investigate the two-dimensional (2D) electron population in a semiconductor quantum well. It is found that, due to the position-dependent quantum interference, the 2D spatial distribution of electron population can be easily controlled via adjusting the system parameters. Thus, our scheme shows the underlying probability for the applications in solid-state optoelectronics.  相似文献   

15.
We have investigated a series of double-layer structures consisting of a layer of self-assembled non-magnetic CdSe quantum dots (QDs) separated by a thin ZnSe barrier from a ZnCdMnSe diluted magnetic semiconductor (DMSs) quantum well (QW). In the series, the thickness of the ZnSe barrier ranged between 12 and 40 nm. We observe two clearly defined photoluminescence (PL) peaks in all samples, corresponding to the CdSe QDs and the ZnCdMnSe QW, respectively. The PL intensity of the QW peak is observed to decrease systematically relative to the QD peak as the thickness of the ZnSe barrier decreases, indicating a corresponding increase in carrier tunneling from the QW to the QDs. Furthermore, polarization-selective PL measurements reveal that the degree of polarization of the PL emitted by the CdSe QDs increases with decreasing thickness of the ZnSe barriers. The observed behavior is discussed in terms of anti-parallel spin interaction between carriers localized in the non-magnetic QDs and in the magnetic QWs.  相似文献   

16.
The two-dimensional electron mobility for a GaAs single-interface heterolayer at low temperatures is computed, as a function of electron sheet density, in terms of the Fang-Howard-Stern model wave-function, for both deformation-coupled and piezoelectric-coupled scattering by acousticmode phonons. The temperature range of validity for this mobility proportional to 1/T is estimated. The unscreened mobilities are also given for comparison. The ion-scattering mobility, for various distances of the donor ion layer from the interface, is also computed, using the same model wave-function. It appears that, in the conditions of interest, lattice scattering will not dominate the overall mobility but can have a significant effect on it.  相似文献   

17.
A two-dimensional electron-hole system consisting of light high-mobility electrons with a density of N s = (4–7) × 1010 cm?2 and a mobility of μ n = (4–6) × 105 cm2/V s and heavier low-mobility holes with a density of P s = (0.7–1.6) × 1011 cm?2 and a mobility of μ p = (3–7) × 104 cm2/V s has been discovered in a quantum well based on mercury telluride with the (013) surface orientation. The system exhibits a number of specific magnetotransport properties in both the classical magnetotransport (positive magnetoresistance and alternating Hall effect) and the quantum Hall effect regime. These properties are associated with the coexistence of two-dimensional electrons and holes.  相似文献   

18.
19.
We investigate the transient behaviors of the dispersion and the absorption in a three-level GaAs/AlGaAs semiconductor quantum well system. It is found that the Fano interference and the energy splitting affect the transient behaviors dramatically, which can be used to manipulate efficiently the gain-absorption coefficient and group velocity of the probe field. The dependence of transient electron population on the Fano interference and the energy splitting is also discussed.  相似文献   

20.
The resistivity change due to electron spin resonance (ESR) absorption is investigated in a high-mobility two-dimensional electron system formed in a Si/SiGe heterostructure. Results for a specific Landau level configuration demonstrate that the primary cause of the ESR signal is a reduction of the spin polarization, not the effect of electron heating. The longitudinal spin relaxation time T1 is obtained to be of the order of 1 ms in an in-plane magnetic field of 3.55 T. The suppression of the effect of the Rashba fields due to high-frequency spin precession explains the very long T1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号