首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a model of quantum teleportation protocol based on a double quantum dot array. The unknown qubit is encoded using a pair of quantum dots, with one excess electron, coupled by tunneling. It is shown how to create a maximally entangled state using an adiabatically increasing Coulomb repulsion between different dot pairs. This entangled state is exploited to perform teleportation again using an adiabatic coupling between itself and the incoming unknown state. Finally, a sudden separation of Bob's qubit allows a time evolution of Alice's, which amounts to a modified version of standard Bell measurement. A transmission over a long distance could be obtained by considering the entangled state of a chain of N coupled double quantum dots. The system is shown to be increasingly robust with N against decoherence due to phonons.  相似文献   

2.
3.
We study some general properties of a strongly correlated electron system defined on a lattice. Assuming that the system exhibits off-diagonal long-range order, we show that this assumption implies the Meissner effect. This extends to lattice systems previous results obtained for the continuous case.  相似文献   

4.
A theoretic model is presented to take into account the roughness effects on phonon transport in Si nanowires (NWs). Based on the roughness model, an indirect Monte Carlo (MC) simulation is carried out to predict the lattice thermal conductivities of the NWs with different surface qualities. Through fitting the experimental data with the MC predictions, the scattering strength on phonons from the boundary, umklapp phonon-phonon processes and impurities can be estimated. It is found that the scattering on phonons by the roughness cell boundaries in a rough nanowire can reduce the phonon mean free path to be smaller than the nanowire diameter, the Casimir limit of the phonon mean free path in a flat nanowire for phonons engaged in completely diffused boundary scattering processes.  相似文献   

5.
6.
7.
The electronic transport through a side-coupled triple quantum dot array (QDA) is investigated by means of Green function technique within the tight-binding framework. We obtain the formula of the linear conductance of QDA. The linear conductance spectrum is numerically studied. We discuss the feasibility of applying our structure to the electron spin polarized device and calculate the ratio of the spin polarized current flows.  相似文献   

8.
We systematically study thermal conductivity of multilayer silicene by means of Boltzmann Transportation Equation (BTE) method. We find that their thermal conductivity strongly depends on the surface structures. Thermal conductivity of bilayer silicene varies from 3.31 W/mK to 57.9 W/mK with different surface structures. Also, the 2×1 surface reconstruction induces unusual large thermal conductivity anisotropy, which reaches 70% in a four-layer silicene. We also find that the anisotropy decreases with silicene thickness increasing, owing to the significant reduction of thermal conductivity in the zigzag direction and its slight increment in the armchair direction. Finally, we find that both the phonon-lifetime anisotropy and the phonon-group-velocity anisotropy contribute to the thermal conductivity anisotropy of multilayer silicene. These findings could be helpful in the field of heat management, thermoelectric applications involving silicene and other multilayer nanomaterials with surface reconstructions in the future.  相似文献   

9.
The electronic properties of a square lattice under an applied perpendicular magnetic field in the presence of impurities or vacancies are investigated by the tight-binding method including up to second nearest neighbor interactions. These imperfections result in new gaps and bands in the Hofstadter butterfly even when the second order interactions break the bipartite symmetry. In addition, the whole spectrum of the Hall conduction is obtained by the Kubo formula for the corresponding cases. The results are in accordance with the Thouless-Kohmoto-Nightingale-den Nijs integers when the Fermi energy lies in an energy gap. We find that the states due to the vacancies or impurities with small hopping constants are highly localized and do not contribute to the Hall conduction. However, the impurities with high hopping constants result in new Hall plateaus with constant conduction of σ(xy)?=±?e(2)/h, since high hopping constants increase the probability of an electron contributing to the conduction.  相似文献   

10.
Electronic transport through a one-dimensional quantum dot array is theoretically studied. In such a system both electron reservoirs of continuum states couple with the individual component quantum dots of the array arbitrarily. When there are some dangling quantum dots in the array outside the dot(s) contacting the leads, the electron tunneling through the quantum dot array is wholly forbidden if the electron energy is just equal to the molecular energy levels of the dangling quantum dots, which is called as antiresonance of electron tunneling. Accordingly, when the chemical potential of the reservoir electrons is aligned with the electron levels of all quantum dots, the linear conductance at zero temperature vanishes if there are odd number dangling quantum dots; Otherwise, it is equal to 2e2/h due to resonant tunneling if the total number of quantum dots in the array is odd. This odd–even parity is independent of the interdot and the lead–dot coupling strength.  相似文献   

11.
12.
A quantum dot array, consisting of Au dots, was prepared by the linear aggregation technique and assembled between two electrodes. We study the voltage–current characteristic of the quantum dot array, using a Non-Equilibrium Green’s Function (NEGF) model based on the Keldysh formalism. The results of our simulation and experimental data are compared. The simulated voltage–current curve is a reasonable fit with the measured data. It shows that the present model can be used to study quantum dot arrays. Furthermore, our results indicate that the electrical characteristics of an Au dot array are directly related to the coupling parameters.  相似文献   

13.
14.
夏俊杰  聂一行 《中国物理 B》2011,20(9):97306-097306
We have studied the transport properties of a ring-coupled quantum dot array driven by an AC magnetic field, which is connected to two leads, and we give the response of the transport current to the dynamical localization. We found that when the ratio of the magnetic flux to the total quantum dots number is a root of the zeroth order Bessel function, dynamical localization and collapse of quasi-energy occurs and importantly, the transport current displays a dip which is the signal of dynamical localization. The dynamical localization effect is strengthened as a result of the increase of the quantum dot number, and it is weakened on account of the increase of the dots-lead hopping rate.  相似文献   

15.
16.
A heat transfer process is studied in a one-dimensional lattice of coupled rotators in which the orientation interaction between neighboring units is described by the periodic potential. Using this system as an example, it is demonstrated for the first time that one-dimensional lattices with a finite thermal conductivity in the thermodynamic limit can exist without substrate potential. As the temperature increases, the given system transforms from the state with an infinite thermal conductivity to the state with a finite thermal conductivity. The finiteness of the thermal conductivity stems from the existence of localized stationary excitations that interfere with heat transfer in the lattice. The lifetime and the concentration of these excitations increase with an increase in the temperature, which leads to a monotonic decrease in the thermal conductivity coefficient.  相似文献   

17.
《Physics letters. A》2005,337(3):241-246
Using the long-time averaged occupation probability method, we study the dynamics of two interacting electrons moving in a one-dimensional array of quantum dots under the action of external electric field. The results show that the dynamical localization can happen perfectly in the quantum dot array with appropriate parameters. These parameters under which localization happens must be selected more strictly when we add more quantum dots in the arrays.  相似文献   

18.
The energy level separation between the edge states in topological insulator quantum dots lies in the terahertz(THz) range.Quantum confinement ensures the nonuniformity of the energy level separation near the Dirac point. Based on these features, we propose that a topological insulator quantum dot array can be operated as an electrically pumped continuous-wave THz laser. The proposed device can operate at room temperature, with power exceeding 10 mW and quantum efficiency reaching ~50%. This study may promote the usage of topological insulator quantum dots as an important source of THz radiation.  相似文献   

19.
迟锋  刘黎明  孙连亮 《中国物理 B》2017,26(3):37304-037304
Spin-polarized current generated by thermal bias across a system composed of a quantum dot(QD) connected to metallic leads is studied in the presence of magnetic and photon fields. The current of a certain spin orientation vanishes when the dot level is aligned to the lead's chemical potential, resulting in a 100% spin-polarized current. The spin-resolved current also changes its sign at the two sides of the zero points. By tuning the system's parameters, spin-up and spin-down currents with equal strength may flow in opposite directions, which induces a pure spin current without the accompany of charge current. With the help of the thermal bias, both the strength and the direction of the spin-polarized current can be manipulated by tuning either the frequency or the intensity of the photon field, which is beyond the reach of the usual electric bias voltage.  相似文献   

20.
钨是最具应用前景的面向等离子体候选材料,但核聚变堆内强烈的辐照环境会使钨的近表面区域产生辐照损伤,进而影响其关键的导热性能.本文构建了包含辐照损伤相关缺陷的晶体钨模型,并采用非平衡分子动力学的方法定量研究了这些缺陷对钨导热性能的影响.结果表明,随中子辐射能量的增加,晶体内部留下的Frenkel缺陷数目增多进而导致钨的晶格热导率降低;间隙原子比空位更易于向晶界偏聚,且钨中的间隙钨原子与空位相比,使晶格热导率下降程度更大.纳米级氦气泡导致晶格热导率的显著降低,气孔率为2.1%时晶格热导率降至完美晶体的约25%.这些不同的缺陷造成不同程度的周围晶格扭曲,增加了声子散射几率,是导致晶格热导率下降的根源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号