首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This work focuses on the quantum mechanical evaluation of two components of the dark current in quantum well infrared photodetectors (QWIPs)––field induced emission (FIE) and thermionic emission (TE). The negligible value of the third component of the dark current––sequential tunnelling (ST)––was shown theoretically in previously published work. Calculations are on devices that cover the long wavelength- to very long wavelength-infrared (LWIR to VLWIR) region of the spectrum. The results prove theoretically for the first time various experimentally observed characteristics of these two emission components of the dark current.  相似文献   

2.
In this paper, a model to calculate the dark current of quantum well infrared photodetectors at high-temperature regime is presented. The model is derived from a positive-definite quantum probability-flux and considers thermionic emission and thermally-assisted tunnelling as mechanisms of dark current generation. Its main input data are the wave functions obtained by time-independent Schrodinger equation and it does not require empirical parameters related to the transport of carriers. By means of this model, the dark current of quantum well infrared photodetectors at high-temperature regime is investigated with respect to the temperature, the barrier width, the applied electric field and the position of the first excited state. The theoretical results are compared with experimental data obtained from lattice-matched InAlAs/InGaAs, InGaAsP/InP on InP substrate and AlGaAs/GaAs structures with rectangular wells and symmetric barriers, whose absorption peak wavelengths range from MWIR to VLWIR. The corresponding results are in a good agreement with experimental data at different temperatures and at a wide range of applied electric field.  相似文献   

3.
The dark currents of InSb metal-insulator-semiconductor (MIS) charge injection devices (CIDs) in the temperature range 30 to 120K are studied. It is found that a thermal-generating process dominates the dark current in the high temperature region. When the device is under small bias voltage, a bump in the trap emission current appears below 70K. This current is due to carrier capture and emission processes of a hole trap state located in the bulk material, and the measured activation energy is 50meV. For larger bias conditions, the band-to-band tunnelling current gradually overcomes the trap emission current. It smears out the bump in the trap emission current, and shows a slightly temperature-dependent behaviour in the plot. The effects of field electrodes are also studied. It is found from experimental results that the edge of the electric field around the device periphery plays an important role in the band-to-band tunnelling process, and a field electrode with suitable bias can improve the dark current response drastically.  相似文献   

4.
Temperature-dependent photoluminescence (PL) and time resolved photoluminescence (TRPL) are performed to study the PL characteristics and carrier transfer mechanism in asymmetric coupled InGaN/GaN multiple quantum wells (AS-QWs). Our results reveal that abnormal carrier tunnelling from the wide quantum well (WQW) to the narrow quantum well (NQW) is observed at temperature higher than about lOOK, while a normal carrier tunnelling from the NQW to the WQW is observed at temperature lower than 100 K. The reversible carrier tunnelling between the two Q Ws makes it possible to explore new types of temperature sensitive emission devices. It is shown that PL internal quantum efficiency (IQE) of the NQW is enhanced to about 46% due to the assistant of the abnormal carrier tunnelling.  相似文献   

5.
6.
D K Roy 《Pramana》1985,25(4):431-438
It was shown earlier that during quantum mechanical tunnelling, a microscopic particle has a distributed probability of emission about its original energy and is not constrained to be field-emitted only at its initial energy. Such an energy distribution process appears obvious on the quantum theory of observation and measurement which relates the energy of a microscopic particle with the time required for its determination through the Heisenberg’s uncertainty relation. Here, an account of the tunnelling theory based upon the latter is presented. The consequent analysis gives rise to a spectrum in the energy of the transmitted electrons and also yields a method to estimate the tunnelling time as well as the tunnelling current density across an arbitrary barrier.  相似文献   

7.
We have fabricated GaAs/AlAs p-i-n double barrier resonant tunnelling diodes with active lateral dimensions down to 0.25μn2 using optical lithography and wet etching. Many devices have been investigated and systematic variations in the quantum well emission have been observed as the device size is decreased. We observe a red shift of the quantum well recombination lines. In addition a new line is observed at lower energy in the spectra of the smallest devices. The quantum well luminescence efficiency is found to be constant down to the smallest device size.  相似文献   

8.
The work describes multiband photon detectors based on semiconductor micro-and nano-structures. The devices considered include quantum dot, homojunction, and heterojunction structures. In the quantum dot structures, transitions are from one state to another, while free carrier absorption and internal photoemission play the dominant role in homo or heterojunction detectors. Quantum dots-in-a-well (DWELL) detectors can tailor the response wavelength by varying the size of the well. A tunnelling quantum dot infrared photodetector (T-QDIP) could operate at room temperature by blocking the dark current except in the case of resonance. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunnelling, while the dark current is blocked by AlGaAs/InGaAs tunnelling barriers placed in the structure. A two-colour infrared detector with photoresponse peaks at ∼6 and ∼17 μm at room temperature will be discussed. A homojunction or heterojunction interfacial workfunction internal photoemission (HIWIP or HEIWIP) infrared detector, formed by a doped emitter layer, and an intrinsic layer acting as the barrier followed by another highly doped contact layer, can detect near infrared (NIR) photons due to interband transitions and mid/far infrared (MIR/FIR) radiation due to intraband transitions. The threshold wavelength of the interband response depends on the band gap of the barrier material, and the MIR/FIR response due to intraband transitions can be tailored by adjusting the band offset between the emitter and the barrier. GaAs/AlGaAs will provide NIR and MIR/FIR dual band response, and with GaN/AlGaN structures the detection capability can be extended into the ultraviolet region. These detectors are useful in numerous applications such as environmental monitoring, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing. The paper presented there appears in Infrared Photoelectronics, edited by Antoni Rogalski, Eustace L. Dereniak, Fiodor F. Sizov, Proc. SPIE Vol. 5957, 59570W (2005).  相似文献   

9.
We study the dark current of the GaAs/AlGaAs quantum-well infrared photodetector (QWIP) by assuming a drift-diffusion carrier transport in the barriers where the electric fields are obtained by the current continuity condition and the self-consistent energy band structure. It has been shown that due to the current continuity condition, the dark currents across the QWIP devices are determined by the thermionic emission from the emitter to the multiple quantum well (MQW) region. The self-consistent calculation of the Schrödinger and Poisson equations shows a weak electric field in the barrier region connecting to the emitter (much smaller than the average field across the QWIP at low bias) due to the accumulation of carriers in the triangle quantum well formed at the emitter-MQW interface, which results in a very small dark current at low bias. The numerical results explain well our experimental observation.  相似文献   

10.
Degradation of ZnSe-based light-emitting devices (light-emitting diodes and diode lasers) are reviewed. These devices quickly degrade (i.e., show a decrease in the amount of light emitted) during continuous operation at room temperature. The best lifetimes are currently only a few hours for cw diode laser operation. Degradation of ZnSe quantum-well devices are shown to correlate with the current density necessary for operation and with the density of preexisting defects. The temperature of the quantum well during operation has been shown to be >250°C. The decrease in light emission correlates with the development of dark spot defects (DSDs) and dark line defects (DLDs) in or near the active quantum-well region of the device. It is shown that stress in the quantum well is not relaxed until late in the degradation process, and then only partially. Instead, the mechanism of degradation is shown to be the injection of point defects due to nonradiative relaxation processes, which ultimately collapse into the DSDs and DLDs. Methods to reduce the degradation of these devices are discussed.  相似文献   

11.
The reduction of the dark current without reducing the photocurrent is a considerable challenge in developing far-infrared (FIR)/terahertz detectors. Since quantum dot (QD) based detectors inherently show low dark current, a QD-based structure is an appropriate choice for terahertz detectors. The work reported here discusses multi-band tunnelling quantum dot infrared photo detector (T-QDIP) structures designed for high temperature operation covering the range from mid-to far-infrared. These structures grown by molecular beam epitaxy consist of a QD (InGaAs or InAlAs) placed in a well (GaAs/AlGaAs) with a double-barrier system (AlGaAs/InGaAs/AlGaAs) adjacent to it. The photocurrent, which can be selectively collected by resonant tunnelling, is generated by a transition of carriers from the ground state in the QD to a state in the well coupled with a state in the double-barrier system. The double-barrier system blocks the majority of carriers contributing to the dark current. Several important properties of T-QDIP detectors such as the multi-colour (multi-band) nature of the photoresponse, the selectivity of the operating wavelength by the applied bias, and the polarization sensitivity of the response peaks, are also discussed.  相似文献   

12.
Hawking radiation is nowadays being understood as tunnelling through black hole horizons. Here, the extension of the Hamilton–Jacobi approach to tunnelling for non-rotating and rotating black holes in different non-singular coordinate systems not only confirms this quantum emission from black holes but also reveals the new phenomenon of absorption into white holes by quantum mechanical tunnelling. The rôle of a boundary condition of total absorption or emission is also clarified.  相似文献   

13.
Current transport mechanism in Schottky diode containing InAs quantum dots (QDs) is investigated using temperature-varying current-voltage characteristics. We found that the tunnelling emission has obvious effects on the I-V characteristics. The I-V-T measurements revealed clear effects of QDs on the overall current flow. Field emission (FE, pure tunnelling effect) was observed at low temperature and low voltages bias region. The zero-bias barrier height decreases and the ideality factor increases with decreasing temperature, and the ideality factor was found to follow the T0-effect. When the reverse bias is varied, the ideality factors of Schottky barriers exhibit oscillations due to the tunnelling of electrons through discrete levels in quantum dots. The traps distributed within InAlAs layer can also act as a transition step for reverse bias defect-assisted tunnelling current which can phenomenologically explain the decrease of the effective barrier height with measurement temperature.  相似文献   

14.
This paper investigates gate current through ultra-thin gate oxide of nano-scale metal oxide semiconductor field effect transistors (MOSFETs), using two-dimensional (2D) full-band self-consistent ensemble Monte Carlo method based on solving quantum Boltzmann equation. Direct tunnelling, Fowler--Nordheim tunnelling and thermionic emission currents have been taken into account for the calculation of total gate current. The 2D effect on the gate current is investigated by including the details of the energy distribution for electron tunnelling through the barrier. In order to investigate the properties of nano scale MOSFETs, it is necessary to simulate gate tunnelling current in 2D including non-equilibrium transport.  相似文献   

15.
This paper presents a theoretical analysis for the dark current characteristics of different quantum infrared photodetectors. These quantum photodetectors are quantum dot infrared photodetectors (QDIP), quantum wire infrared photodetectors (QRIP), and quantum well infrared photodetectors (QWIP). Mathematical models describing these devices are introduced. The developed models accounts for the self-consistent potential distribution. These models are taking the effect of donor charges on the spatial distribution of the electric potential in the active region. The developed model is used to investigate the behavior of dark current with different values of performance parameters such as applied voltage, number of quantum wire (QR) layers, QD layers, lateral characteristic size, doping quantum wire density and temperature. It explains strong sensitivity of dark current to the density of QDs/QRs and the doping level of the active region. In order to confirm our models and their validity on the practical applications, a comparison between the results obtained by proposed models and that experimentally published are conducted and full agreement is observed. Several performance parameters are tuned to enhance the performance of these quantum photodetectors through the presented modeling. The resultant performance characteristics and comparison among them are presented in this work. From the obtained results we notice that the total dark current in the QRIPs can be significantly lower than that in the QWIPs. Moreover, main features of the QRIPs such as the large gap between the induced photocurrent and dark current open the way for overcoming the problems of quantum dot infrared photodetectors.  相似文献   

16.
The green light emitting diodes(LEDs)have lower quantum efficiency than LEDs with other emission wavelengths in the visible spectrum.In this research,a novel quantum well structure was designed to improve the electroluminescence(EL)of green InGaN-based LEDs.Compared with the conventional quantum well structure,the novel structure LED gained 2.14times light out power(LOP)at 20-mA current injection,narrower FWHM and lower blue-shift at different current injection conditions.  相似文献   

17.
We discuss photonic crystals (PCs) with a microelectromechanical system (MEMS) and semiconductor quantum dots (QDs) as novel classes of PC devices. Integration of MEMS structures into PC devices enables one to realize several kinds of functional devices, such as modulators, switches, and tunable filters for highly integrated photonic circuits. We describe the basic concept of MEMS-integrated PC devices and show numerical and experimental demonstrations of MEMS-integrated functional PC devices. On the other hand, QDs are promising candidates for active media in PC devices. Spontaneous emission control of QD emission in PC nanocavities is especially important for novel optoelectronic devices and quantum information devices. In PC nanocavities, the interaction between QD excitons and photons is enhanced dramatically. The control of spontaneous emission spectrum and the enhancement of the luminescence intensity of InAs QDs by PC nanocavities are demonstrated at telecommunication wavelengths. The Purcell effect for ensemble and single QDs in PC nanocavities are also discussed.  相似文献   

18.
Quantum dot infrared photodetectors (QDIPs) have many advantages over other types of semiconductor-based photodetectors. However some of its characteristics have been investigated theoretically, there are many unstudied points. In this paper a new approach is presented to evaluate quantum dot infrared photodetectors dark current and photocurrent. In this study, it is assumed that both thermionic emission and field-assisted tunneling mechanisms determine the dark current of quantum dot detectors. Based on these assumptions, new formula for average number of electron in a quantum dot for both, dark and illumination condition is calculated, which is more accurate than the previous reported formulas; because in deriving previous reported formulas, it was assumed only thermionic emission determines dark current but field-assisted tunneling mechanisms has not been considered. Then numerical method is used to calculate the average number of electron in a quantum dot and to determine dark current and photocurrent. The theoretical results are compared with experimental data. They have good agreement with available experimental data.  相似文献   

19.
This paper demonstrates experimentally and numerically that a significant modification of spontaneous emission rate can be achieved near the surface of a three-dimensional photonic crystal.In experiments,semiconductor core-shell quantum dots are intentionally confined in a thin polymer film on which a three-dimensional colloidal photonic crystal is fabricated.The spontaneous emission rate of quantum dots is characterised by conventional and time-resolved photoluminescence (PL) measurements.The modification of the spontaneous emission rate,which is reflected in the change of spectral shape and PL lifetime,is clearly observed.While an obvious increase in the PL lifetime is found at most wavelengths in the band gap,a significant reduction in the PL lifetime by one order of magnitude is observed at the short-wavelength band edge.Numerical simulation reveals a periodic modulation of spontaneous emission rate with decreasing modulation strength when an emitter is moved away from the surface of the photonic crystal.It is supported by the fact that the modification of spontaneous emission rate is not pronounced for quantum dots distributed in a thick polymer film where both enhancement and suppression are present simultaneously.This finding provides a simple and effective way for improving the performance of light emitting devices.  相似文献   

20.
Investigation of the quantum dot infrared photodetectors dark current   总被引:1,自引:0,他引:1  
Quantum dot infrared photodetectors (QDIPs) are more efficient than other types of semiconductor based photodetectors; so it has become an actively developed field of research. In this paper quantum dot infrared photodetector dark current is evaluated theoretically. This evaluation is based on the model that was developed by Ryzhii et al. Here it is assumed that both thermionic emission and field-assisted tunneling mechanisms determine the dark current of QDIPs; moreover we have considered Richardson effect, which has not been taken into account in previous research. Then a new formula for estimating average number of electrons in a quantum dot infrared photodetector is derived. Considering the Richardson effect and field-assisted tunneling mechanisms in the dark current improves the accuracy of algorithm and causes the theoretical data to fit better in the experiment. The QDIPs dark current temperature and biasing voltage dependency, contribution of thermionic emission and field-assisted tunneling at various temperatures and biasing voltage in the QDIPs dark current are investigated. Moreover, the other parameter effects like quantum dot (QD) density and QD size effect on the QDIPs dark current are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号