首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with a numerical formulation for coupled thermoplastic problems including phase-change phenomena. The final goal is to get an accurate, efficient and robust numerical model, allowing the numerical simulation of solidification processes in the metal casting industry. Some of the current issues addressed in the paper are the following. A fractional step method arising from an operator split of the governing differential equations has been used to solve the nonlinear coupled system of equations, leading to a staggered product formula solution algorithm. Nonlinear stability issues are discussed and isentropic and isothermal operator splits are formulated. Within the isentropic split, a strong operator split design constraint is introduced, by requiring that the elastic and plastic entropy, as well as the phase-change induced elastic entropy due to the latent heat, remain fixed in the mechanical problem. The formulation of the model has been consistently derived within a thermodynamic framework. The constitutive behavior has been defined by a thermoelastoplastic free energy function, including a thermal multiphase change contribution. Plastic response has been modeled by a J2 temperature dependent model, including plastic hardening and thermal softening. A brief summary of the thermomechanical frictional contact model is included. The numerical model has been implemented into the computational Finite Element code COMET developed by the authors. A numerical assessment of the isentropic and isothermal operator splits, regarding the nonlinear stability behavior, has been performed for weakly and strongly coupled thermomechanical problems. Numerical simulations of solidification processes show the performance of the computational model developed.  相似文献   

2.
A coupled thermomechanical model to simulate light alloy solidification problems in permanent composite moulds is presented. This model is based on a general isotropic thermoelasto-plasticity theory and considers the different thermomechanical behaviours of each component of the mould as well as those of the solidifying material during its evolution from liquid to solid. To this end, plastic evolution equations, a phase-change variable and a specific free energy function are proposed in order to derive temperature-dependent material constitutive laws.The corresponding finite element formulation and the staggered scheme used to solve the coupled non-linear system of equations are also presented. Finally, the temperature and displacement predictions of the model are validated with laboratory measurements obtained during an experimental trial.  相似文献   

3.
In this paper, we present a thermomechanical framework which makes use of the internal variable theory of thermodynamics for damage-coupled finite viscoplasticity with nonlinear isotropic hardening. Damage evolution, being an irreversible process, generates heat. In addition to its direct effect on material's strength and stiffness, it causes deterioration of the heat conduction. The formulation, following the footsteps of Simó and Miehe (1992), introduces inelastic entropy as an additional state variable. Given a temperature dependent damage dissipation potential, we show that the evolution of inelastic entropy assumes a split form relating to plastic and damage parts, respectively. The solution of the thermomechanical problem is based on the so-called isothermal split. This allows the use of the model in 2D and 3D example problems involving geometrical imperfection triggered necking in an axisymmetric bar and thermally triggered necking of a 3D rectangular bar.  相似文献   

4.
A coupled thermo-mechanical problem is presented in this paper. The constitutive model is based on thermoplastic model for large strains where both kinematic and isotropic hardening are included. It is shown that a non-associated plasticity formulation enables thermodynamic consistent heat generation to be modeled, which can be fitted accurately to experimental data. In the numerical examples the effect of heat generation is investigated and both thermal softening and temperature-dependent thermal material parameters are considered. The constitutive model is formulated such that pure isotropic and pure kinematic hardening yield identical uniaxial mechanical response and mechanical dissipation. Thus, differences in response due to hardening during non-proportional loading can be studied. Thermally triggered necking is studied, as well as cyclic loading of Cook’s membrane. The numerical examples are solved using the finite element method, and the coupled problem that arises is solved using a staggered method where an isothermal split is adopted.  相似文献   

5.
This work gives the thermodynamically consistent theoretical formulations and the numerical implementation of a plasticity model fully coupled with damage. The formulation of the elasto-plastic-damage behavior of materials is introduced here within a framework that uses functional forms of hardening internal state variables in both damage and plasticity. The damage is introduced through a damage mechanics framework and utilizes an anisotropic damage measure to quantify the reduction of the material stiffness. In deriving the constitutive model, a local yield surface is used to determine the occurrence of plasticity and a local damage surface is used to determine the occurrence of damage. Isotropic hardening and kinematic hardening are incorporated as state variables to describe the change of the yield surface. Additionally, a damage isotropic hardening is incorporated as a state variable to describe the change of the damage surface. The hardening conjugate forces (stress-like terms) are general nonlinear functions of their corresponding hardening state variables (strain-like terms) and can be defined based on the desired material behavior. Various exponential and power law functional forms are studied in this formulation. The paper discusses the general concept of using such functional forms. however, it does not address the relevant appropriateness of certain forms to solve different problems. The proposed work introduces a strong coupling between damage and plasticity by utilizing damage and plasticity flow rules that are dependent on both the plastic and damage potentials. However, in addition to that the coupling is further enhanced through the use of the functional forms of the hardening variables introduced in this formulation.The use of this formulation in solving boundary value problems will be presented in future work. The fully implicit backward Euler scheme is developed for this model to be solved in a Newton–Raphson solution procedure.  相似文献   

6.
高温下混凝土的本构模拟及破坏分析   总被引:1,自引:1,他引:0  
针对已建立的高温下混凝土中化学-热-水力-力学耦合过程分析的分级数学模型,发展了混凝土的化学-热-水力-力学(CTHM)耦合本构模型。在已有的Willam-Warnke弹塑性屈服准则基础上发展了考虑脱水和脱盐引起的材料损伤及化学塑性软化、塑性应变硬化/软化和吸力硬化的广义Willam-Warnke本构模型,模拟高温下混凝土的材料非线性行为。为保证全局守恒方程的Newton迭代过程的二阶收敛率,导出了非线性化学-热-水力-力学(CTHM)耦合本构模型的一致性切线模量矩阵。数值结果显示了本文所发展的化学-热-水力-力学(CTHM)耦合本构模型在模拟高温下混凝土中复杂破坏过程的能力和有效性。  相似文献   

7.
8.
A finite element, thermally coupled incompressible flow formulation considering phase‐change effects is presented. This formulation accounts for natural convection, temperature‐dependent material properties and isothermal and non‐isothermal phase‐change models. In this context, the full Navier–Stokes equations are solved using a generalized streamline operator (GSO) technique. The highly non‐linear phase‐change effects are treated with a temperature‐based algorithm, which provides stability and convergence of the numerical solution. The Boussinesq approximation is used in order to consider the temperature‐dependent density variation. Furthermore, the numerical solution of the coupled problem is approached with a staggered incremental‐iterative solution scheme, such that the convergence criteria are written in terms of the residual vectors. Finally, this formulation is used for the solutions of solidification and melting problems validating some numerical results with other existing solutions obtained with different methodologies. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
The paper outlines a constitutive model for finite thermo-visco-plastic behavior of amorphous glassy polymers and considers details of its numerical implementation. In contrast to existing kinematical approaches to finite plasticity of glassy polymers, the formulation applies a plastic metric theory based on an additive split of Lagrangian Hencky-type strains into elastic and plastic parts. The analogy between the proposed formulation in the logarithmic strain space and the geometrically linear theory of plasticity, makes this constitutive framework very transparent and attractive with regard to its numerical formulation. The characteristic strain hardening of the model is derived from a polymer network model. We consider the particularly simple eight chain model, but also comment on the recently developed microsphere model. The viscoplastic flow rule in the logarithmic strain space uses structures of the free volume flow theory, which provides a highly predictive modeling capacity at the onset of viscoplastic flow. The integration of this micromechanically motivated approach into a three-dimensional computational model is a key concern of this work. We outline details of the numerical implementation of this model, including elements such as geometric pre- and post-transformations to/from the logarithmic strain space, a thermomechanical operator split algorithm consisting of an isothermal mechanical predictor followed by a heat conduction corrector and finally, the consistent linearization of the local update algorithm for the dissipative variables as well as its relationship to the global tangent operator. The performance of the proposed formulation is demonstrated by means of a spectrum of numerical examples, which we compare with our experimental findings.  相似文献   

10.
针对准脆性材料的非线性特征:强度软化和刚度退化、单边效应、侧限强化和拉压软化、不可恢复变形、剪胀及非弹性体胀,在热动力学框架内,建立了准脆性材料的弹塑性与各向异性损伤耦合的本构关系。对准脆性材料的变形机理和损伤诱发的各向异性进行了诠释,并给出了损伤构形和有效构形中各物理量之间的关系。在有效应力空间内,建立了塑性屈服准则、拉压不同的塑性随动强化法则和各向同性强化法则。在损伤构形中,采用应变能释放率,建立了拉压损伤准则、拉压不同的损伤随动强化法则和各向同性强化法则。基于塑性屈服准则和损伤准则,构建了塑性势泛函和损伤势泛函,并由正交性法则,给出了塑性和损伤强化效应内变量的演化规律,同时,联立塑性屈服面和损伤加载面,给出了塑性流动和损伤演化内变量的演化法则。将损伤力学和塑性力学结合起来,建立了应变驱动的应力-应变增量本构关系,给出了本构数值积分的要点。以单轴加载-卸载往复试验识别和校准了本构材料常数,并对单轴单调试验、单轴加载-卸载往复试验、二轴受压、二轴拉压试验和三轴受压试验进行了预测,并与试验结果作了比较,结果表明,所建本构模型对准脆性材料的非线性材料性能有良好的预测能力。  相似文献   

11.
Sheet metal forming processes generally involve large deformations together with complex loading sequences. In order to improve numerical simulation predictions of sheet part forming, physically-based constitutive models are often required. The main objective of this paper is to analyze the strain localization phenomenon during the plastic deformation of sheet metals in the context of such advanced constitutive models. Most often, an accurate prediction of localization requires damage to be considered in the finite element simulation. For this purpose, an advanced, anisotropic elastic–plastic model, formulated within the large strain framework and taking strain-path changes into account, has been coupled with an isotropic damage model. This coupling is carried out within the framework of continuum damage mechanics. In order to detect the strain localization during sheet metal forming, Rice’s localization criterion has been considered, thus predicting the limit strains at the occurrence of shear bands as well as their orientation. The coupled elastic–plastic-damage model has been implemented in Abaqus/implicit. The application of the model to the prediction of Forming Limit Diagrams (FLDs) provided results that are consistent with the literature and emphasized the impact of the hardening model on the strain-path dependency of the FLD. The fully three-dimensional formulation adopted in the numerical development allowed for some new results – e.g. the out-of-plane orientation of the normal to the localization band, as well as more realistic values for its in-plane orientation.  相似文献   

12.
The so-called viscoplastic consistency model, proposed by Wang, Sluys and de Borst, is extended here to the integration of a thermoviscoplastic constitutive equation for J2 plasticity and adiabatic conditions. The consistency condition in this case includes not only strain rate but also the effect of temperature on the yield function. Using the backward Euler integration scheme to integrate the constitutive equations, an implicit algorithm is proposed, leading to generalized expressions of the classical return mapping algorithm for J2 plasticity, both for the iterative calculation of the plastic multiplier increment and for the consistent tangent operator when strain rate and temperature are considered also as state variables of the hardening equation. The model was implemented in a commercial finite element code and its performance is demonstrated with the numerical simulation of four Taylor impact tests.  相似文献   

13.
In this paper, a physical model of the structure and attenuation of shock waves in metals is presented. In order to establish the constitutive equations of materials under high velocity deformation and to study the structure of transition zone of shock wave, two independent approaches are involved. Firstly, the specific internal energy is decomposed into the elastic compression energy and elastic deformation energy, and the later is represented by an expansion to third-order terms in elastic strain and entropy, including the coupling effect of heat and mechanical energy. Secondly, a plastic relaxation function describing the behaviour of plastic flow under high temperature and high pressure is suggested from the viewpoint of dislocation dynamics. In addition, a group of ordinary differential equations has been built to determine the thermo-mechanical state variables in the transition zone of a steady shock wave and the thickness of the high pressure shock wave, and an analytical solution of the equations can be found provided that the entropy change across the shock is assumed to be negligible and Hugoniot compression modulus is used instead of the isentropic compression modulus. A quite approximate method for solving the attenuation of shock wave front has been proposed for the flat-plate symmetric impact problem.  相似文献   

14.
In this paper, a new approach for constitutive modeling of strain range dependent cyclic hardening is proposed by extending the kinematic hardening model based on the critical state of dynamic recovery. It is assumed that isotropic, as well as kinematic, hardening consists of several parts, and that each part of isotropic hardening evolves when the corresponding part of kinematic hardening is in the critical state of dynamic recovery. The extended model is capable of simulating the cyclic hardening behavior in which different characteristics of cyclic hardening appear depending on strain range. The model is verified by simulating the relatively large cyclic straining tests of 304 stainless steel at ambient temperature, in which cyclic hardening does not stabilize before rupture if strain range exceeds a certain value. The model is further verified by predicting the history dependence of cyclic hardening under incremental cyclic loading and the maximum plastic strain dependence of strain hardening in cyclic tension.  相似文献   

15.
借助罚因子建立了三维摩擦接触本构模型,接触条件被表示为类似于非关联流动的弹塑性本构关系的形式。采用增量描述,对Coulomb摩擦定律采用Taylor展开作线性近似,导出了接触问题的互补虚功方程,然后基于有限元离散建立了三维摩擦接触问题的增量线性互补方法。数值算例表明了本文方法的有效性。  相似文献   

16.
This article describes new a priori stability for the full nonlinear systems of coupled thermoplasticity at finite strains and presents a fractional step method leading to a new class of unconditionally stable staggered algorithms. These results are shown to hold for general models of multiplicative plasticity that include, as a particular case, the single-crystal model. The proposed product formula algorithm is designed via an entropy based operator split that yields one of the first known staggered algorithms that retains the property of nonlinear unconditional stability. The scheme employs an isentropic step, in which the total entropy is held constant, followed by a heat conduction step (with nonlinear source) at fixed configuration. The nonlinear stability analysis shows that the proposed staggered scheme inherits the a priori energy estimate for the continuum problem, regardless of the size of the time-step. In sharp contrast with these results, it is shown that widely used staggered methods employing an isothermal step followed by a heat conduction problem can be at most only conditionally stable. The excellent performance of the methodology is illustrated in representative numerical simulations.  相似文献   

17.
The effects of void size and hardening in a hexagonal close-packed single crystal containing a cylindrical void loaded by a far-field equibiaxial tensile stress under plane strain conditions are studied. The crystal has three in-plane slip systems oriented at the angle 60° with respect to one another. Finite element simulations are performed using a strain gradient crystal plasticity formulation with an intrinsic length scale parameter in a non-local strain gradient constitutive framework. For a vanishing length scale parameter the non-local formulation reduces to a local crystal plasticity formulation. The stress and deformation fields obtained with a local non-hardening constitutive formulation are compared to those obtained from a local hardening formulation and to those from a non-local formulation. Compared to the case of the non-hardening local constitutive formulation, it is shown that a local theory with hardening has only minor effects on the deformation field around the void, whereas a significant difference is obtained with the non-local constitutive relation. Finally, it is shown that the applied stress state required to activate plastic deformation at the void is up to three times higher for smaller void sizes than for larger void sizes in the non-local material.  相似文献   

18.
The equation of state of finite-strain thermoelasticity is obtained using a formalized approach to constructing constitutive relations for complex media under the assumption of closeness of intermediate and current configurations. A variational formulation of the coupled thermoelastic problem is proposed. The constitutive equation, the heat-conduction equation, the relations for internal energy, free energy, and entropy, and the variational formulation of the coupled problem of finite-strain thermoelasticity are tested on the problem of uniaxial extension of a bar. The model adequately describes experimental data for elastomers, such as entropic elasticity, temperature inversion, and temperature variation during an adiabatic process. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 3, pp. 184–196, May–June, 2008.  相似文献   

19.
In this paper, a constitutive model with a temperature and strain rate dependent flow stress (Bergstrom hardening rule) and modified Armstrong-Frederick kinematic evolution equation for elastoplastic hardening materials is introduced. Based on the multiplicative decomposition of the deformation gradient,new kinematic relations for the elastic and plastic left stretch tensors as well as the plastic deformation-dependent spin tensor are proposed. Also, a closed-form solution has been obtained for the elastic and plastic left stretch tensors for the simple shear problem.To evaluate model validity, results are compared with known experimental data for SUS 304 stainless steel, which shows a good agreement with the results of the proposed theoretical model.Finally, the stress-deformation curve, as predicted by the model, is plotted for the simple shear problem at room and elevated temperatures using the same material properties for AA5754-O aluminium alloy.  相似文献   

20.
A finite strain constitutive model to predict the deformation behaviour of orthotropic metals is developed in this paper. The important features of this constitutive model are the multiplicative decomposition of the deformation gradient and a new Mandel stress tensor combined with the new stress tensor decomposition generalized into deviatoric and spherical parts. The elastic free energy function and the yield function are defined within an invariant theory by means of the structural tensors. The Hill’s yield criterion is adopted to characterize plastic orthotropy, and the thermally micromechanical-based model, Mechanical Threshold Model (MTS) is used as a referential curve to control the yield surface expansion using an isotropic plastic hardening assumption. The model complexity is further extended by coupling the formulation with the shock equation of state (EOS). The proposed formulation is integrated in the isoclinic configuration and allows for a unique treatment for elastic and plastic anisotropy. The effects of elastic anisotropy are taken into account through the stress tensor decomposition and plastic anisotropy through yield surface defined in the generalized deviatoric plane perpendicular to the generalized pressure. The proposed formulation of this work is implemented into the Lawrence Livermore National Laboratory-DYNA3D code by the modification of several subroutines in the code. The capability of the new constitutive model to capture strain rate and temperature sensitivity is then validated. The final part of this process is a comparison of the results generated by the proposed constitutive model against the available experimental data from both the Plate Impact test and Taylor Cylinder Impact test. A good agreement between experimental and simulation is obtained in each test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号