首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study we try to detect metal fluoride bands in the inductively coupled plasma. BeF1 provided the most intense spectra with a head at 300.99 nm. Maximum intensity of BeF1 was found under the following conditions: high carrier gas flow, low power level and low observation height above the load coil. The detection limit of fluoride by means of molecular emission was 400 mg l?1.  相似文献   

2.
The effects of the carrier gas flow rate and the power on the amount of water that can be tolerated by the plasma have been studied by ICP-AES. Pneumatic nebulization, ultrasonic nebulization associated with desolvation and laser ablation have been used to obtain wet, partially desolvated and dry aerosols. It has been found that water is beneficial in improving the plasma electron number density and the excitation temperature when so-called robust conditions are used, i.e. high power and low carrier gas flow rate. This can be explained by the release of hydrogen. Under these conditions, desolvation had almost no effect on the plasma characteristics. When non-robust conditions were used, the plasma was highly sensitive to water loading. Desolvation led to an improvement in the plasma conditions. In this instance, the addition of hydrogen was most useful to restore the properties of the plasma and to act as a load buffer to minimize the matrix effects. The plasma characteristics have been evaluated based on simple diagnostics such as the Mg II/Mg I line intensity ratio, the Fe excitation temperature, the Ar line and the Ar continuum.  相似文献   

3.
The use of inductively coupled plasma atomic emission spectrometry with ultrasonic nebulization (USN-ICP-AES) for determining Ag, Al, As, Ba, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Sb, Sr, V and Zn in complex matrices of Ca, Na, K and P in waste waters is described. Generally, depressions in the analyte emission intensity occur in the presence of concomitants. Matrix interferences can be minimized by increasing the operating power and lowering the carrier gas flow rate. However, the enhancement of the signal-to-background ratios (SBRs) shows an opposite trend. Therefore, routine analyses were performed at a compromise power setting of 1,350 W, a carrier gas flow rate of 0.8 L min(-1) and an observation height of 14 mm above the load coil and using a matrix matched calibration procedure. Limits of detection (LODs) at chosen operating conditions were at microg L(-1) levels for most of the elements studied, including mercury when KBr is added to the analyte solution to enhance sensitivity. LODs were not significantly changed in the presence of matrix elements. Recoveries for the majority of added elements from spiked waste water samples are between 93 and 105% using a matrix matched calibration.  相似文献   

4.
A nitrogen pumped dye laser source atomic fluorescence system that can be used to spatially map the distribution of ground state neutral atom and ion species in the inductively coupled plasma is described. Complete maps of neutral atom and ion species (Ca and Sr) were measured with this system. Measurements are presented (15 point radial profiles) for five heights (9,13,19,25 and 31 mm above the load coil), five powers (0.5,0.75,1.0,1.25 and 1.5 kW), and three carrier gas flow rates (1,0.85 and 0.651/min). The results are extensively discussed and compared with atomic absorption data and other fluorescence data in the literature.  相似文献   

5.
The use of inductively coupled plasma atomic emission spectrometry with ultrasonic nebulization (USN-ICP-AES) for determining Ag, Al, As, Ba, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Sb, Sr, V and Zn in complex matrices of Ca, Na, K and P in waste waters is described. Generally, depressions in the analyte emission intensity occur in the presence of concomitants. Matrix interferences can be minimized by increasing the operating power and lowering the carrier gas flow rate. However, the enhancement of the signal-to-background ratios (SBRs) shows an opposite trend. Therefore, routine analyses were performed at a compromise power setting of 1350 W, a carrier gas flow rate of 0.8 L min–1 and an observation height of 14 mm above the load coil and using a matrix matched calibration procedure. Limits of detection (LODs) at chosen operating conditions were at μg L–1 levels for most of the elements studied, including mercury when KBr is added to the analyte solution to enhance sensitivity. LODs were not significantly changed in the presence of matrix elements. Recoveries for the majority of added elements from spiked waste water samples are between 93 and 105% using a matrix matched calibration. Received: 13 January 2000 / Revised: 10 April 2000 / Accepted: 18 April 2000  相似文献   

6.
A theoretical investigation of the effect of different parameters on the flow and the temperature fields in a radiofrequency inductively coupled plasma is carried out. The parameters studied are: central injection gas flow rate, total gas flow rate, input power, and the type of plasma gas. The results obtained for argon and nitrogen plasmas at atmospheric pressure indicate that the flow and the temperature fields in the coil region, as well as the heat flux to the wall of the plasma confinement tube, are considerably altered by the changes in the torch operating conditions.  相似文献   

7.
在 ICP- AES中 ,最常用来引入液体样品的方法是雾化法 .因此 ,雾化器雾化效率的高低直接影响到 ICP- AES的分析性能 [1,2 ] .目前 ,在 ICP- AES中最常用的雾化器是气动雾化器 (PN) .它的优点是简单、稳定性好 ;缺点是产生的雾滴的直径范围很宽 (一般为 1~ 50 μm) ,进样效率低 ,一般仅为 1 %~3% [3] .热雾化器是近年发展起来的一种雾化效率较高的雾化法 ,已被越来越多地用于 ICP- AES[4~ 7] .热雾化法的雾化原理与同轴气动雾化法类似 ,不同之处在于 :对于热雾化法来说 ,(1 )雾化所需的气体来自于液体样品本身而不是外加的惰性…  相似文献   

8.
孙大海  贺柏令 《分析化学》1993,21(5):566-568
本文探讨了不同分析条件下基体干扰效应的分布规律,从消除基体干扰效应角度对ICP-AES操作条件的优化进行了讨论。结果表明,在一般分析条件下,典型基体元素的零干扰点主要出现于10~15mm的观察区域。在此区间仔细选择观察高度,同时结合入射功率、载气流量的调整及加入基体缓冲剂,可以将基体的影响减至最小。  相似文献   

9.
Time- and space-resolved electron density measurements, made both above the load coil and in the load coil region of a pulsed inductively coupled plasma, are presented. These data, coupled with argon and calcium emission data, give values for the rates of both radial and vertical transport in the plasma. The data indicate that analyte emission behavior is governed primarily by the rate at which the central channel can be heated through radial transport processes. The electron densities measured in the load coil region agree well with electron densities calculated by models assuming local thermodynamic equilibrium, but agree poorly with non-equilibrium models. Some of the timedependent emission behavior observed in previous work with modulated plasmas is explained by non-uniform heating of argon in the load coil region.Presented in part at the 1989 European Winter Conference on Plasma Spectrochemistry, Reutte, Austria  相似文献   

10.
A factorial design was applied to evaluate plasma conditions employing the Mg II 280/Mg I 285 nm intensity ratio in an axially viewed inductively coupled plasma optical emission spectrometer using different sample introduction devices: a concentric or a V-groove nebulizer and a cyclonic or a Sturman-Masters spray chamber. Effects of nebulizer gas flow-rate on Mg II/Mg I ratio were different in each introduction system. Robust conditions were obtained at low nebulizer gas flow-rate when using concentric nebulizer with a cyclonic spray chamber or a concentric nebulizer and a Sturman-Masters spray chamber. However, when using a V-groove nebulizer with a Sturman-Masters spray chamber, Mg II/Mg I ratio increased at high nebulizer gas flow-rates. Recovery experiments for a milk standard reference material diluted in water-soluble tertiary amines in both robust and non-robust conditions indicated that the robust condition was reached at higher nebulizer gas flow-rates and led to better accuracy and precision when using a V-groove nebulizer.  相似文献   

11.
This paper deals with results of experiments performed with a 9 MHz free-running rf generator for producing an inductively coupled plasma (ICP) in argon. Samples were introduced as wet aerosols after nebulization with a concentric pneumatic nebulizer. The nett emission .signals of spectral lines emitted by Sr in the atomic as well as first ionized state were measured for volumes of plasma with projected square areas of 0.25 mm2. These measurements were made while varying the observation height above the rf coil and the gas flow in the central nebulizer tube as well as adding Cs to a concentration level of 1000 μg ml?1 to the samples.Ionic excitation temperatures were calculated and found not to be influenced by the presence of the Cs matrix. An interference induced by Cs causes an increase in both Sr atomic and ionic line intensities only in the so called preheating zone at the higher nebulizer gas flows and just above the rf coil.The Cs induced interference at these conditions results in an increase of the Sr ionic and atomic line intensity ratio, signifying a non-LTE process changing the relative population distribution of the Sr and Sr+ energy states.  相似文献   

12.
Laser-excited ionic fluorescence has been used to study the effects of sample matrix, operating conditions, and load coil shielding on analyte ion transport efficiency through the sampling orifice of an inductively coupled plasma mass spectrometer. Significant changes in ion transport efficiency result from changes in sample composition, RF forward power, nebulizer flow and torch shield configuration. The changes in ion transport efficiency correlate well with changes in the potential recorded on a single floating probe placed 1 mm upstream from the sampling orifice.  相似文献   

13.
Experimental studies and computer simulations were conducted to identify plasma operating conditions and to explore and contrast the excitation conditions of Ar, Ar-O2, and Ar-He inductively coupled plasmas (ICPs) for the introduction of microliter volumes of sample solutions with a direct injection high efficiency nebulizer (DIHEN). The best MgII 280.270 nm/MgI 285.213 nm ratio (6.6) measured with Ar ICP atomic emission spectrometry for the DIHEN (RF power = 1500 W; nebulizer gas flow rate = 0.12 L min(-1)) was less than the ratio (8.2) acquired on the same instrument for conventional nebulization (1500 W and 0.6 L min(-1)). Addition of small amounts of O2 or He (5%) to the outer gas flow improved excitation conditions in the ICP, that is, a more robust condition (a MgII/MgI ratio of up to 8.9) could be obtained by using the DIHEN with Ar-O2 and Ar-He mixed-gas plasmas, thereby minimizing some potential spectroscopic and matrix interferences, in comparison to Ar ICPAES.  相似文献   

14.
Electrothermal vaporization (ETV) sample introduction in inductively coupled plasma atomic emission spectrometry suffers from severe matrix effects. In the present study, the differences between wet and dry plasma conditions are studied. In addition, the influence of the sample composition was investigated. An inductively coupled plasma optical emission spectrometer, with detection based on charge transfer, allowed the simultaneous measurement of ionic and atomic emission line intensities during the transient signal. Mg and Cr were the test elements. The ion-to-atom line ratio increases at higher power settings, but the changes were larger when a nebulizer was used for sample introduction than with ETV sample introduction. The decrease of ion-to-atom line ratios at increasing observation height was more pronounced when ETV was used, due to the absence of water vapor. The gas flow rate showed a stronger influence for nebulization than for ETV. In the presence of a calcium matrix, lower ion-to-atom line ratios were observed, but the ratio did not change significantly within the transient emission signal. Similar line ratios were observed for different amounts of calcium matrix. The values of ion-to-atom line ratios for Mg and Cr indicate that the plasma ionization and thermal characteristics are not modified due to the presence of the calcium matrix.  相似文献   

15.
A vertically movable horizontal slit driven by a computer-controlled stepping motor was placed close to the front of the entrance slit of a monochromator. The axial channel of the plasma being imaged onto the entrance slit, the observation height was scanned by slicing the image of the plasma with the horizontal slit. Excitation and gas temperature profiles were calculated under various operating conditions from emission profiles of Fe I and OH lines, respectively. From the axial emission and temperature profiles, two excitational regions governed by different excitation mechanisms were postulated along the axis of the plasma. In the first region from 0 to 8 mm above the load coil, low-energy lines were predominantly excited and their emission profiles were controlled mainly by the dissociation rate of molecules. In the second region from 10 to 20mm above the load coil, high-energy lines were predominant and volatilization interferences were small.  相似文献   

16.
A survey of the literature shows that the values found for the excitation parameters (temperature and electron number density) in an inductively coupled radio-frequency argon plasma at atmospheric pressure (ICP) depend on the plasma configuration and the measuring procedure. The present study proposes a novel method for measuring excitation temperatures that does not require a knowledge of transition probabilities. The experimental work concerns measurements of the spatial distributions of the temperature, the number densities of the electrons and various atomic and ionic species in a low-power (~0.5 kW) ICP for analytical purposes operated at either of two extreme carrier gas flow rates. Observations were made at three different heights above the induction coil. At high flow rate (~51/min) the familiar hollow configuration of the plasma is demonstrated by off-axis maxima for the temperature and the number densities of electrons and atomic species at all observation heights. At low flow rate (~1 l./min), the radial atom number density distributions are parabolically shaped and constricted to a smaller channel at all observation heights. The authors conclude from the results that both the plasma configurations are not in a state of complete local thermal equilibrium at observation heights used for analytical work (i.e., above the coil).  相似文献   

17.
In order to study in ICP-AES, the influence of the plasma operating conditions, power and carrier gas flow rate, and of the optical transition on non-spectral matrix interferences, line-rich elements such as Mn, Cr and Cu have been selected. Selection of a large pool of lines was possible because of the use of multichannel solid-state detection. An axially viewed plasma was used. Matrices were K, Na, Li, Ca and Mg. Matrix effect was evaluated by comparing the signals for test elements in water. Use of robust conditions led to an almost flat response, while non-robust conditions led to a significant scattering of the signal changes. In the case of Mn, the z7P Mn multiplet was exemplified as it contains not only the most Mn sensitive line, the Mn II 257.610 nm resonance line, but also the 259.372 and 260.568 nm resonance lines, and the non-resonant Mn II 343.897 nm line. Even under robust conditions, the non-resonant line exhibited a different behavior. The difference with the other resonance lines was reduced by using an axially viewed ICP with a large injector id, or suppressed by using a radially viewed ICP. In the case of Cr, the z6D Cr II multiplet was selected as it contains three resonant lines linked to the a6S fundamental, and other non-resonant lines. The behavior was identical under robust conditions, while an abnormal behavior was observed for the Cr II 334.78 nm line under non-robust conditions, depending on the extent of these non-robust conditions. Cu was an interesting element as ionic lines lie in the energy sum range 15.96–16.26 eV, i.e. slightly above the Ar ionization energy. It was shown that, under robust conditions, the line behavior was not similar although the energy range was small. Moreover, this behavior was depending on the ICP system used for the experiment. It was concluded that not only the magnitude of matrix effects depends on the operating conditions but also may depend on the optical transition, illustrating the complexity of these effects.  相似文献   

18.
This work has further shown that the collisional–radiative multi-level model for the analyte atom and ion could be approximated by the step-wise series model. The non-Boltzmann and non-Saha factors of Ca for 48 levels corresponding to radiative decay, radiative recombination, Penning ionization and absorption processes, respectively, as well as to their mutual processes occurring at the axial channel of inductively coupled plasma and at an observation height of 15 mm above the load coil, were calculated. It was found that the high level relative to low level is over populated.  相似文献   

19.
We are reporting observations of positive and negative variations of emission line intensities during the determination of boron and titanium in biological matrices by axial view inductively coupled plasma optical emission spectrometry with segmented charge-coupled device detection. The study included the testing of several elements (yttrium, palladium and platinum) and analytical wavelengths for internal standardization, aiming to compensate for variations in signal recovery due to matrix interferences. Human albumin was chosen as principal matrix component to assess the effect of variable chemical and instrumental operating conditions on boron response. A parametric study was performed by considering the application of two different nebulizer–aerosol chamber systems, the effect of plasma operating conditions on analyte and internal standard signals and the influence of common blood plasma electrolytes, added as salts of alkaline or alkaline earth elements. The pneumatic injection systems tested were a standard cross-flow nebulizer with a Scott type spray chamber and a concentric Meinhard type device coupled to a glass cyclonic spray chamber. The change from standard (i.e. medium RF power and relatively high aerosol carrier gas flow rate) to robust (i.e. higher RF power and lower carrier gas flow rate) conditions contributed to large, non-correlated variations in boron intensities and in some of the analyte/internal standard ratios. Significant memory effects were observed for injection of boron solutions prepared with boric acid and containing small amounts of acid, but those effects were negligible when the boron carrier compound was boronophenylalanyne. The injection of titanium solutions did not produce analyte carry-over effects. When internal standards were employed, a less effective signal compensation was consistently observed for boron at higher albumin concentrations when the difference in energies of the lines was between 4.5 and 6 eV. This effect was enhanced for some line pairs when robust conditions are employed. Differences in the response between nebulizers were minor, with a slight advantage in sensitivity for the cross-flow/Scott system. Yttrium was found to be useful for signal compensation in the determination of boron and titanium in blood and human plasma provided that the equivalent concentration of albumin in the nebulized sample dilutions was kept below 0.2% w/v. Simultaneous measurement of a reference strontium line was found to be useful as an additional verification of the response of yttrium as internal standard.  相似文献   

20.
Spectral emission intensity in the inductively coupled plasma (ICP) was measured versus height above the load coil during laser ablation solid-sample introduction. The laser-beam pulse width, power density, and wavelength, and the sample composition are know to effect the particle size distribution of the ablated mass. Ceramic and metal samples were ablated using nanosecond and picosecond pulses, and provided similar emission intensity profiles for common elements, indicating that changes in the particle size distribution are not manifested in the vertical spatial emission profile. The gas environment in the ablation chamber also influences the particle size distribution as well as the ablation interaction. Gas composition will influence the spatial emission intensity profile because of changes in the excitation characteristics of the ICP. A preliminary study using noble gases in the ablation interaction was conducted by keeping the spatial profile constant, maintaining a constant total gas composition to the ICP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号