首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present explicit wavefunctions for quasi-hole excitations over a variety of non-abelian quantum Hall states: the Read-Rezayi states with k ? 3 clustering properties and a paired spin-singlet quantum Hall state. Quasi-holes over these states constitute a topological quantum register, which can be addressed by braiding quasi-holes. We obtain the braid properties by direct inspection of the quasi-hole wavefunctions. We establish that the braid properties for the paired spin-singlet state are those of ‘Fibonacci anyons’, and thus suitable for universal quantum computation. Our derivations in this paper rely on explicit computations in the parafermionic conformal field theories that underly these particular quantum Hall states.  相似文献   

2.
3.
《Nuclear Physics B》1999,556(3):530-544
We introduce the notion of ‘order-k non-abelian exclusion statistics’. We derive the associated thermodynamic equations by employing the thermodynamic Bethe ansatz for specific non-diagonal scattering matrices. We make contact with results obtained by different methods and we point out connections with ‘fermionic sum formulas’ for characters in a conformal field theory. As an application, we derive thermodynamic distribution functions for quasi-holes over a class of non-abelian quantum Hall states recently proposed by Read and Rezayi.  相似文献   

4.
《Nuclear Physics B》1996,464(3):540-575
The symmetries of critical ground states of two-dimensional lattice models are investigated. We show how mapping a critical ground state to a model of a rough interface can be used to identify the chiral symmetry algebra of the conformal field theory that describes its scaling limit. This is demonstrated in the case of the six-vertex model, the three-coloring model on the honeycomb lattice, and the four-coloring model on the square lattice. These models are critical and they are described in the continuum by conformal field theories whose symmetry algebras are the su(2)k=1, su(3)k=1, and the su(4)k=1 Kac-Moody algebra, respectively. Our approach is based on the Frenkel-Kac-Segal vertex operator construction of level-one Kac-Moody algebras.  相似文献   

5.
《Nuclear Physics B》1997,506(3):685-694
We present an approach to the computation of the non-abelian statistics of quasiholes in quantum Hall states, such as the Pfaffian state, whose wavefunctions are related to the conformal blocks of minimal model conformal field theories. We use the Coulomb gas construction of these conformal field theories to formulate a plasma analogy for the quantum Hall states. A number of properties of the Pfaffian state follow immediately, including the Berry phases, which demonstrate the quasiholes' fractional charge, the abelian statistics of the two-quasihole state, and equal-time ground state correlation functions. The non-abelian statistics of multi-quasihole states follows from an additional assumption.  相似文献   

6.
7.
Applications of conformal field theory to the theory of fractional quantum Hall systems are discussed. In particular, Laughlin's wave function and its cousins are interpreted as conformal blocks in certain rational conformal field theories. Using this point of view a hamiltonian is constructed for electrons for which the ground state is known exactly and whose quasihole excitations have nonabelian statistics; we term these objects “nonabelions”. It is argued that universality classes of fractional quantum Hall systems can be characterized by the quantum numbers and statistics of their excitations. The relation between the order parameter in the fractional quantum Hall effect and the chiral algebra in rational conformal field theory is stressed, and new order parameters for several states are given.  相似文献   

8.
9.
We study excitations in edge theories for non-abelian quantum Hall states, focussing on the spin polarized states proposed by Read and Rezayi and on the spin singlet states proposed by two of the authors. By studying the exclusion statistics properties of edge-electrons and edge-quasiholes, we arrive at a novel K-matrix structure. Interestingly, the duality between the electron and quasihole sectors links the pseudoparticles that are characteristic for non-abelian statistics with composite particles that are associated to the pairing physics of the non-abelian quantum Hall states.  相似文献   

10.
The spectral properties of Kitaev’s honeycomb lattice model are investigated both analytically and numerically with the focus on the non-abelian phase of the model. After summarizing the fermionization technique which maps spins into free Majorana fermions, we evaluate the spectrum of sparse vortex configurations and derive the interaction between two vortices as a function of their separation. We consider the effect vortices can have on the fermionic spectrum as well as on the phase transition between the abelian and non-abelian phases. We explicitly demonstrate the 2n-fold ground state degeneracy in the presence of 2n well separated vortices and the lifting of the degeneracy due to their short-range interactions. The calculations are performed on an infinite lattice. In addition to the analytic treatment, a numerical study of finite size systems is performed which is in exact agreement with the theoretical considerations. The general spectral properties of the non-abelian phase are considered for various finite toroidal systems.  相似文献   

11.
We show that the quantum Hall wave functions for the ground states in the Jain series nu=n/(2np+1) can be exactly expressed in terms of correlation functions of local vertex operators Vn corresponding to composite fermions in the nth composite-fermion (CF) Landau level. This allows for the powerful mathematics of conformal field theory to be applied to the successful CF phenomenology. Quasiparticle and quasihole states are expressed as correlators of anyonic operators with fractional (local) charge, allowing a simple algebraic understanding of their topological properties that are not manifest in the CF wave functions. Moreover, our construction shows how the states in the nu=n/(2np+1) Jain sequence may be interpreted as condensates of quasiparticles.  相似文献   

12.
We calculate the ground state phase diagrams of a mixed Ising model on a square lattice where spins S (± 3/2, ± 1/2) in one sublattice are in alternating sites with spins Q (± 5/2, ± 3/2, ± 1/2), located on the other sublattice. The Hamiltonian of the model includes first neighbor interactions between the S and Q spins, next-nearest-neighbor interactions between the S spins, and between the Q spins, and crystal field. The topologies of the phase diagrams depend on the values of the parameters in the Hamiltonian. The diagrams show some key features: coexistence between regions, points where two, three, four, five and six states can coexist. Besides being very useful as a way to check the low temperature limit of the finite-temperature phase diagram, often obtained by mean-field theories, the richness of the ground state diagrams for certain combinations of parameters can be used as a guide to explore interesting regions of the finite-temperature phase diagram of the model.  相似文献   

13.
《Nuclear Physics B》1999,546(3):711-730
We construct Landau-Ginzburg effective field theories for fractional quantum Hall states - such as the Pfaffian state - which exhibit non-abelian statistics. These theories rely on a Meissner construction which increases the level of a non-abelian Chem-Simons theory while simultaneously projecting out the unwanted degrees of freedom of a concomitant enveloping abelian theory. We describe this construction in the context of a system of bosons at Landau level filling factor ν = l, where the non-abelian symmetry is a dynamically generated SU(2) continuous extension of the discrete particle-hole symmetry of the lowest Landau level. We show how the physics of quasiparticles and their non-abelian statistics arises in this Landau-Ginzburg theory. We describe its relation to edge theories - where a coset construction plays the role of the Meissner projection — and discuss extensions to other states.  相似文献   

14.
We study the properties of the conformal blocks of the conformal field theories with Virasoro or W-extended symmetry. When the conformal blocks contain only second-order degenerate fields, the conformal blocks obey second order differential equations and they can be interpreted as ground-state wave functions of a trigonometric Calogero–Sutherland Hamiltonian with non-trivial braiding properties. A generalized duality property relates the two types of second order degenerate fields. By studying this duality we found that the excited states of the Calogero–Sutherland Hamiltonian are characterized by two partitions, or in the case of WAk1WAk1 theories by k   partitions. By extending the conformal field theories under consideration by a u(1)u(1) field, we find that we can put in correspondence the states in the Hilbert state of the extended CFT with the excited non-polynomial eigenstates of the Calogero–Sutherland Hamiltonian. When the action of the Calogero–Sutherland integrals of motion is translated on the Hilbert space, they become identical to the integrals of motion recently discovered by Alba, Fateev, Litvinov and Tarnopolsky in Liouville theory in the context of the AGT conjecture. Upon bosonization, these integrals of motion can be expressed as a sum of two, or in general k, bosonic Calogero–Sutherland Hamiltonian coupled by an interaction term with a triangular structure. For special values of the coupling constant, the conformal blocks can be expressed in terms of Jack polynomials with pairing properties, and they give electron wave functions for special Fractional Quantum Hall states.  相似文献   

15.
We review 35 years of structural studies of quasi-1D organic conductors during which the concepts of 2kF and 4kF BOW and CDW have been elaborated. In strongly correlated quarter filled band systems these instabilities give rise to SP, DM and CO ground states. We relate these structural features to the instabilities of the 1D electron gas. To stabilize the different ground states the nature of the electron-phonon coupling has to be considered together with the coupling of the organic stacks with the anion sublattice. New results concerning the classification of the SP phase in connection with the adiabatic or antiadiabatic phonon field and its competition with the CO are also introduced.  相似文献   

16.
Heat capacity, resistivity, and magnetic susceptability data have been obtained for the compounds REBa2Cu3O7-x, where RE = Dy, Ho or Er. Neutron diffraction data on the Ho compound show a structure identical to that of YBa2Cu3O7-x. Magnetic transitions are observed at Tm=0.95, 0.17 and 0.59 K for Dy, Ho and Er compounds, respectively. It is argued that these are due predominantly to dipolar interactions. Resistivity data show that the magnetic state is coexistent with superconductivity in all cases. From the heat capacity data, the degeneracies of the crystal field ground states are determined, and estimates are given for the magnetic moment in the ground state and the energy separation of the first excited crystal field state.  相似文献   

17.
《Physics letters. A》1997,224(6):331-336
We consider the correlation functions of two-dimensional turbulence in the presence and absence of a three-dimensional perturbation, by means of conformal field theory. In the presence of three-dimensional perturbation, we show that in the strong coupling limit of a small scale random force, there is some logarithmic factor in the correlation functions of velocity stream functions. We show that the logarithmic conformal field theory c8,1 describes the 2D-turbulence both in the absence and in the presence of the perturbation. We obtain the energy spectrum E(k) ∼ k−5.125 ln(k) for perturbed 2D-turbulence and E(k) ∼ k−5 ln(k) for unperturbed turbulence. Recent numerical simulation and experimental results confirm our prediction.  相似文献   

18.
The frustrated Ising model on kagome lattice with nearest-neighboring antiferromagnetic interaction is investigated by using Monte Carlo simulation of the Wang-Landau algorithm and Glauber dynamics. The geometrical frustration leads to a particularly high degeneracy of ground states in this system. A small magnetic field applied can lift the degeneracy partially, and produce the magnetization plateau of 1/3 saturate value (Ms), which is analogous to the magnetic behavior in triangular antiferromagnetic system. However, different from the long-range ferrimagnetic state responsible for 1/3 Ms plateau in triangular lattice, the ferrimagnetic ground state corresponding to 1/3 Ms plateau in kagome lattice is short-ranged and still highly degenerate. Furthermore, the spin configuration of these degenerate ferrimagnetic ground states show an inherent characteristic that the spins along the magnetic field must be aligned on the closed loops, which can be well understood in terms of geometrical frustration.  相似文献   

19.
Ground states of theX Y-model on infinite one-dimensional lattice, specified by the Hamiltonian $$---J\left[ {\sum {\left\{ {(1 + \gamma )\sigma _x^{(j)} \sigma _x^{(j)} + (1 - \gamma )\sigma _y^{(j)} \sigma _y^{(j + 1)} } \right\} + 2\lambda \sum {\sigma _z^{(j)} } } } \right]$$ with real parametersJ≠0,γ andλ, are all determined. The model has a unique ground state for |λ|≧1, as well as forγ=0, |λ|<1; it has two pure ground states (with a broken symmetry relative to the 180° rotation of all spins around thez-axis) for |λ|<1,γ≠0, except for the known Ising case ofλ=0, |λ|=1, for which there are two additional irreducible representations (soliton sectors) with infinitely many vectors giving rise to ground states. The ergodic property of ground states under the time evolution is proved for the uniqueness region of parameters, while it is shown to fail (even if the pure ground states are considered) in the case of non-uniqueness region of parameters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号