首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main goal of this paper is to study the asymptotic expansion near the boundary of the large solutions of the equation
  相似文献   

2.
3.
4.
5.
6.
7.
8.
This paper is concerned with a semilinear parabolic equation involving critical Sobolev exponent in a ball or in RN. The asymptotic behavior of unbounded, radially symmetric, nonnegative global solutions which do not decay to zero is given. The structure of the space of initial data is also discussed.  相似文献   

9.
The semilinear wave equation
□u + m2u + ¦u¦p ? 2 u(V1 ¦u¦p) = 0
in Ω= R3, ?∞ < t < ∞, is studied where □ denotes the d'Alembertian operator and 1 means spatial convolution. Under mild assumptions on the real-valued function V and 2 ? p ? 3 the well-posedness of the Cauchy problem is proved. Furthermore, some properties of the solutions of the equation are analyzed such as the asymptotic behavior of local energy as ¦t¦ → + ∞ in the case of zero mass. Our results extend that of Perla Menzala and Strauss, where case p = 2 was studied.  相似文献   

10.
11.
We study a semilinear elliptic equation of the form
wheref is continuous, odd inu and satisfies some (subcritical) growth conditions. The domain Ω⊂RN is supposed to be an unbounded domain (N≥3). We introduce a class of domains, called strongly asymptotically contractive, and show that for such domains Ω, the equation has infinitely many solutions.  相似文献   

12.
13.
By constructing the comparison functions and the perturbed method, it is showed that any solution uC2(Ω) to the semilinear elliptic problems Δu=k(x)g(u), xΩ, u|Ω=+∞ satisfies , where Ω is a bounded domain with smooth boundary in RN; , −2<σ, c0>0, ; gC1[0,∞), g?0 and is increasing on (0,∞), there exists ρ>0 such that , ∀ξ>0, , .  相似文献   

14.
In this paper, we study the asymptotic behavior as x1→+∞ of solutions of semilinear elliptic equations in quarter- or half-spaces, for which the value at x1=0 is given. We prove the uniqueness and characterize the one-dimensional or constant profile of the solutions at infinity. To do so, we use two different approaches. The first one is a pure PDE approach and it is based on the maximum principle, the sliding method and some new Liouville type results for elliptic equations in the half-space or in the whole space RN. The second one is based on the theory of dynamical systems.  相似文献   

15.
The multiplicity of solutions for semilinear elliptic equations with exponential growth nonlinearities is treated. The approach to the problem is a variational method.  相似文献   

16.
17.
18.
We consider nonautonomous semilinear evolution equations of the form $$\frac{dx}{dt}= A(t)x+f(t,x) . $$ Here A(t) is a (possibly unbounded) linear operator acting on a real or complex Banach space $\mathbb{X}$ and $f: \mathbb{R}\times\mathbb {X}\to\mathbb{X}$ is a (possibly nonlinear) continuous function. We assume that the linear equation (1) is well-posed (i.e. there exists a continuous linear evolution family {U(t,s)}(t,s)∈Δ such that for every s∈?+ and xD(A(s)), the function x(t)=U(t,s)x is the uniquely determined solution of Eq. (1) satisfying x(s)=x). Then we can consider the mild solution of the semilinear equation (2) (defined on some interval [s,s+δ),δ>0) as being the solution of the integral equation $$x(t) = U(t, s)x + \int_s^t U(t, \tau)f\bigl(\tau, x(\tau)\bigr) d\tau,\quad t\geq s . $$ Furthermore, if we assume also that the nonlinear function f(t,x) is jointly continuous with respect to t and x and Lipschitz continuous with respect to x (uniformly in t∈?+, and f(t,0)=0 for all t∈?+) we can generate a (nonlinear) evolution family {X(t,s)}(t,s)∈Δ , in the sense that the map $t\mapsto X(t,s)x:[s,\infty)\to\mathbb{X}$ is the unique solution of Eq. (4), for every $x\in\mathbb{X}$ and s∈?+. Considering the Green’s operator $(\mathbb{G}{f})(t)=\int_{0}^{t} X(t,s)f(s)ds$ we prove that if the following conditions hold
  • the map $\mathbb{G}{f}$ lies in $L^{q}(\mathbb{R}_{+},\mathbb{X})$ for all $f\in L^{p}(\mathbb{R}_{+},\mathbb{X})$ , and
  • $\mathbb{G}:L^{p}(\mathbb{R}_{+},\mathbb{X})\to L^{q}(\mathbb {R}_{+},\mathbb{X})$ is Lipschitz continuous, i.e. there exists K>0 such that $$\|\mathbb{G} {f}-\mathbb{G} {g}\|_{q} \leq K\|f-g\|_{p} , \quad\mbox{for all}\ f,g\in L^p(\mathbb{R}_+,\mathbb{X}) , $$
then the above mild solution will have an exponential decay.  相似文献   

19.
20.
In this paper, we study the effect of domain shape on the multiplicity of positive solutions for the semilinear elliptic equations. We prove a Palais-Smale condition in unbounded domains and assert that the semilinear elliptic equation in unbounded domains has multiple positive solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号