首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The boundary value problem for the Laplace equation outside several cuts in a plane is studied. The jump of the solution of the Laplace equation and the boundary condition containing the jump of its normal derivative are specified of the cuts. The unique solution of this problem is obtained. The problem is reduced to the uniquely solvable Fredholm equation of the second kind and index zero. The singularities at the ends of the cuts are investigated.  相似文献   

2.
The boundary value problem for the Helmholtz equation outside several cuts in a plane is studied. The jump of the solution of the Helmholtz equation and the jump of its normal derivative are specified of the cuts. The unique solution of this problem is constructed in the explicit form by means of single layer and angular potentials. The singularities at the ends of the cuts are investigated.  相似文献   

3.
The mixed Dirichlet-Neumann problem for the Laplace equation in a bounded connected plane domain with cuts (cracks) is studied. The Neumann condition is given on closed curves making up the boundary of a domain, while the Dirichlet condition is specified on the cuts. The existence of a classical solution is proved by potential theory and boundary integral equation method. The integral representation for a solution is obtained in the form of potentials. The density in potentials satisfies the uniquely solvable Fredholm integral equation of the second kind and index zero. Singularities of the gradient of the solution at the tips of cuts are investigated.  相似文献   

4.
The problem on the electric current from electrodes in a magnetizedsemiconductor film is reduced to the skew derivative problemfor the Laplace equation outside cuts in a plane. The problemfor the Laplace equation is studied under different conditionsat infinity, which have a certain physical meaning. With thehelp of potential theory, the skew derivative problem is reducedto a Fredholm integral equation of the second kind, which isuniquely solvable. The Neumann problem for the Laplace equationin the exterior of cuts in a plane is a particular case of ourproblem.  相似文献   

5.
A boundary value problem for harmonic functions outside cuts in a plane is considered. The jump of the normal derivative is specified on the cuts as well as a linear combination of the normal derivative on one side of the cut and the jump of the unknown function. The problem is studied with three different conditions at infinity, which lead to different results on existence and number of solutions. The integral representation for a solution is obtained in the form of potentials density in which satisfies the uniquely solvable Fredholm integral equation of the 2nd kind. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
We consider a boundary value problem for the Laplace equation outside cuts on a plane. Boundary conditions of the third kind, which are in general different on different sides of each cut, are posed on the cuts. We show that the classical solution of the problem exists and is unique. We obtain an integral representation for the solution of the problem in the form of potentials whose densities are found from a uniquely solvable system of Fredholm integral equations of the second kind.  相似文献   

7.
The boundary value problem for the Laplace equation is studied on a domain with smooth compact boundary and with smooth internal cracks. The Neumann or the Robin condition is given on the boundary of the domain. The jump of the function and the jump of its normal derivative is prescribed on the cracks. The solution is looked for in the form of the sum of a single layer potential and a double layer potential. The solvability of the corresponding integral equation is determined and the explicit solution of this equation is given in the form of the Neumann series. Estimates for the absolute value of the solution of the boundary value problem and for the absolute value of the gradient of the solution are presented.  相似文献   

8.
We consider the Dirichlet problem for the Laplace equation in a plane domain with smooth cuts of arbitrary form for the case in which the solution is not continuous at the endpoints of the cuts. We present a well-posed statement of the problem, prove the existence and uniqueness theorems for the classical solution, obtain an integral representation of the solution, and use it to analyze the properties of the solution. We show that, as a rule, the Dirichlet problem in this setting has no weak solutions, even though there exists a classical solution.  相似文献   

9.
The boundary value problem for the Helmholtz equation outside several cuts in a plane is studied. The 2 boundary conditions are given on the cuts. One of them specifies the jump of the unkown function. Another one contain the jump of the normal derivative of an unknown function and a limit value of this function on the cuts. The unique solution of this problem is reduced to the uniquely solvable Fredholm equation of the second kind and index zero by means of single layer and angular potentials. The singularities at the ends of the cuts are investigated.
Sunto Nel presente lavoro si studia il problema al contorno per l'equazione di Helmholtz all'esterno di più tagli nel piano. Le due condizioni al contorno sono assegnate sui tagli. Una di queste prescrive il salto della funzione incognita, l'altra contiene il salto della derivata normale di una funzione incognita ed un valore limite di questa funzione sui tagli. La soluzione univoca di questo problema è ricondotta all'equazione di Fredholm di seconda specie ed indice zero, univocamente risolubiles, per mezzo dei potenziali di singolo strato ed angolare. Si studiano, inoltre, le singolarità agli estremi dei tagli.
  相似文献   

10.
We consider a boundary value problem for harmonic functions outside cuts on the plane. The jump of the normal derivative and a linear combination of the normal derivative on one side with the jump of the unknown function are given on each cut. The problem is considered with three conditions at infinity, which lead to distinct results on the existence and number of solutions. We obtain an integral representation of the solution in the form of potentials whose density satisfies a uniquely solvable Fredholm integral equation of the second kind.  相似文献   

11.
This work is devoted to analyzing a thermal shock problem of an elastic strip made of functionally graded materials containing a crack parallel to the free surface based on a generalized fractional heat conduction theory. The embedded crack is assumed to be insulated. The Fourier transform and the Laplace transform are employed to solve a mixed initial-boundary value problem associated with a time-fractional partial differential equation. Temperature and thermal stresses in the Laplace transform domain are evaluated by solving a system of singular integral equations. Numerical results of the thermoelastic fields in the time domain are given by applying a numerical inversion of the Laplace transform. The temperature jump between the upper and lower crack faces and the thermal stress intensity factors at the crack tips are illustrated graphically, and phase lags of heat flux, fractional orders, and gradient index play different roles in controlling heat transfer process. A comparison of the temperature jump and thermal stress intensity factors between the non-Fourier model and the classical Fourier model is made. Numerical results show that wave-like behavior and memory effects are two significant features of the fractional Cattaneo heat conduction, which does not occur for the classical Fourier heat conduction.  相似文献   

12.
The mixed problem for the Laplace equation outside cuts on the plane is considered. As boundary conditions, the value of the desired function on one side of each of the cuts and the value of its oblique derivative on the other side are prescribed. This problem generalizes the mixed Dirichlet-Neumann problem. By using the potential method, the problem reduces to a uniquely solvable Fredholm integral equation of the second kind. __________ Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 12, No. 6, pp. 115–135, 2006.  相似文献   

13.
We discuss stress relaxation and creep experiments of fluids that are generalizations of the classical model due to Burgers by allowing the material moduli such as the viscosities and relaxation and retardation times to depend on the stress. The physical problem, which is cast within the context of one dimension, leads to an ordinary differential equation that involves nonlinear terms like product of a function with a jump discontinuity and the derivative of a function with a jump discontinuity. As the equations are nonlinear, standard techniques that are used to study problems concerning linear viscoelastic fluids such as Laplace transforms and the theory of distributions are not applicable. We find it necessary to seek the solution in a more general setting. We discuss the mathematical and physical issues concerning the jump discontinuities and nonlinearity of the governing equation, and we show that the solution to the governing equation can be found in the sense of the generalized functions introduced by Colombeau. In the framework of Colombeau algebra we, under certain assumptions, derive jump conditions that shall be used in stress relaxation and creep experiments of fluids of the Burgers type. We conclude the paper with a discussion of the physical relevance of these assumptions.  相似文献   

14.
研究了多泥沙河流中的水工建筑物受地震影响后,在异重分层次流体作用下的地震动水压力.考虑到具有铅直坝面的坝体在地震作用下,刚性地作垂直坝面方向的微幅简谐振动.因此假定河床水平,流体理想不可压缩,上下二层流体密度不同,从而得到一个有连接条件的混合边值问题的拉普拉斯方程.然后利用分离变量法以及共轭函数的方法,得到了方程的广义傅氏级数解.通过对该结果的定性分析,最后得到了异重分层次流体作用在坝面上的动水压力的变化规律性,这些结论具有重要的理论与应用价值.  相似文献   

15.
The Dirichlet problem for the Helmholtz equation in a plane exterior domain with cuts is considered for the case in which functions defined on opposite sides of the cuts in the Dirichlet boundary condition do not necessarily satisfy the matching conditions at the cut endpoints and the solution of the problem is not necessarily continuous at the endpoints of the cuts. We give a well-posed statement of the problem, prove existence and uniqueness theorems for a classical solution, derive an integral representation of the solution, and use it to study its properties. We show that the Dirichlet problem in the considered setting does not necessarily have a weak solution, although there exists a classical solution. We derive asymptotic formulas describing the behavior of the gradient of the solution at the endpoints of the cuts.  相似文献   

16.
The method of Difference Potentials (DPM) is applied to solving a Dirichlet problem for the Laplace equation in a square with a cut. The DPM approach has been modified to achieve a more efficient numerical algorithm with respect to computational time. The considered problem can be a prototype for other problems formulated in domains with cuts including elastic problems related to cracks.  相似文献   

17.
The transient dynamic contact problem of the impact of a plane absolutely rigid punch on an elastic half-plane is considered. The solution of the integral equation of this problem in terms of the unknown Laplace transform of the contact stresses at the punch base is constructed by a special method of successive approximations. The solution of the transient dynamic contact problem is obtained after applying an inverse Laplace transformation to the solution of the integral equation over the whole time range of the impact process, and the law of the penetration of the punch into the elastic medium is determined from a Volterra-type integrodifferential equation. The conditions for the punch to begin to separate from the elastic half-plane are formulated from the solution obtained, and all the stages of the separation process are investigated in detail. The law of the punch motion on the elastic half-plane and the width of the contact area, which varies during the separation, are then determined from the solution of the Volterra-type integrodifferential equation when an additional condition is satisfied.  相似文献   

18.
In this paper, we consider the Cauchy problem for the Laplace equation, in a strip where the Cauchy data is given at x = 0 and the flux is sought in the interval 0<x?1. This problem is typical ill-posed: the solution (if it exists) does not depend continuously on the data. We study a modification of the equation, where a fourth-order mixed derivative term is added. Some error stability estimates for the flux are given, which show that the solution of the modified equation is approximate to the solution of the Cauchy problem for the Laplace equation. Furthermore, numerical examples show that the modified method works effectively.  相似文献   

19.
A new statement of a boundary value problem for partial differential equations is discussed. An arbitrary solution to a linear elliptic, hyperbolic, or parabolic second-order differential equation is considered in a given domain of Euclidean space without any constraints imposed on the boundary values of the solution or its derivatives. The following question is studied: What conditions should hold for the boundary values of a function and its normal derivative if this function is a solution to the linear differential equation under consideration? A linear integral equation is defined for the boundary values of a solution and its normal derivative; this equation is called a universal boundary value equation. A universal boundary value problem is a linear differential equation together with a universal boundary value equation. In this paper, the universal boundary value problem is studied for equations of mathematical physics such as the Laplace equation, wave equation, and heat equation. Applications of the analysis of the universal boundary value problem to problems of cosmology and quantum mechanics are pointed out.  相似文献   

20.
We study the solvability of the mixed boundary value problem for the Laplace equation with three distinct boundary conditions, two of which include two directional derivatives with distinct tilt angles and the remaining one is the first boundary condition. An example of a nontrivial solution of the homogeneous problem is given, and conditions under which the problem has a unique solution are established. The solvability of the problem with a nonhomogeneous first boundary condition is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号