首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of calculations of the spatially-resolved density of states (DOS) in an S(F/N) bilayer are presented (S is a superconductor, F is a metallic ferromagnet, N is a normal metal) within quasiclassical theory in the dirty limit. Analytical solutions are obtained in the case of thin F, N layers which demonstrate the peculiar features of DOS in this system. The dependences of the minigap and the DOS peak positions on the exchange energy and parameters of the layers are studied numerically.  相似文献   

2.
The influence of the finite transparency, , of superconductor/normal metal (S/N) interface on the critical temperature of proximity coupled layered structures is investigated in the dirty limit on the basis of the microscopic equations solved exactly by a matrix method. The calculated theoretical curves satisfactory reproduce the experimental dependencies of the critical temperature on the thickness of the superconducting layers in N/S/N trilayers. The relation between the transparency coefficient and the normal metal coherence length is also discussed.  相似文献   

3.
We study the critical temperature T c of FSF trilayers (F is a ferromagnet, S is a singlet superconductor), where the triplet superconducting component is generated at noncollinear magnetizations of the F layers. An exact numerical method is employed to calculate T c as a function of the trilayer parameters, in particular, mutual orientation of magnetizations. Analytically, we consider limiting cases. Our results determine the conditions necessary for the existence of recently investigated odd triplet superconductivity in SF multilayers.  相似文献   

4.
We studied electronic relaxation in long diffusive superconductor/normal metal/superconductor (S/N/S) junctions by means of current noise and transport measurements down to very low temperature (100mK). Samples with normal metal lengths of 4, 10 and 60μm have been investigated. In all samples the shot noise increases very rapidly with the voltage. This is interpreted in terms of enhanced heating of the electron gas confined between the two S/N interfaces. Experimental results are analyzed quantitatively taking into account electron-phonon interaction and heat transfer through the S/N interfaces. Transport measurements reveal that in all samples the two S/N interfaces are connected incoherently, as shown by the reentrance of the resistance at low temperature. The complementarity of noise and transport measurements allows us to show that the energy dependence of the reentrance at low voltage is essentially due to the increasing effective temperature of the quasiparticles in the normal metal. Received 5 February 2002 / Received in final form 6 September 2002 Published online 31 October 2002 RID="a" ID="a"e-mail: hoffmann@drfmc.ceng.cea.fr  相似文献   

5.
Quantum anomalous Hall(QAH) effect is a quantum Hall effect that occurs without the need of external magnetic field. A system composed of multiple parallel QAH layers is an effective high Chern number QAH insulator and the key to the applications of the dissipationless chiral edge channels in low energy consumption electronics. Such a QAH multilayer can also be engineered into other exotic topological phases such as a magnetic Weyl semimetal with only one pair of Weyl points. This work reports the first experimental realization of QAH multilayers in the superlattices composed of magnetically doped(Bi,Sb)_2Te_3 topological insulator and Cd Se normal insulator layers grown by molecular beam epitaxy. The obtained multilayer samples show quantized Hall resistance h/N_e~2, where h is Planck's constant, e is the elementary charge and N is the number of the magnetic topological insulator layers, resembling a high Chern number QAH insulator. The QAH multilayers provide an excellent platform to study various topological states of matter.  相似文献   

6.
A. V. Zaitsev 《JETP Letters》2018,108(3):205-209
Spin-dependent electronic transport is theoretically investigated for double-barrier hybrid structures S–IF–F–IF–N and S–IF–N–IF–N, where S is a superconductor; F and N are ferromagnetic and normal metals, respectively; and IF is the spin-active barrier. It is shown that in the case of strong superconducting proximity effect and sufficiently thin F layers, the differential resistance of such structures can become negative at some voltages, and the voltage dependence of the current can have an N-shaped form. Characteristic feature of the differential resistance is its asymmetric dependence on voltage, which is most clearly manifested at strong polarization of at least one of the barriers. The influence of impurity spin–orbit scattering processes in the N-layer located between the barriers is investigated. The study was carried out for the case of diffusion electron transport.  相似文献   

7.
We review the mesoscopic transport in a diffusive proximity superconductor made of a normal metal (N) in metallic contact with a superconductor (S). The Andreev reflection of electrons on the N–S interface is responsible for the diffusion of electron pairs in N. Superconducting-like properties are induced in the normal metal. In particular, the conductivity of the N metal is locally enhanced by the proximity effect. A re-entrance of the metallic conductance occurs when all the energies involved (e.g. temperature and voltage) are small. The relevant characteristic energy is the Thouless energy which is divided by the diffusion time for an electron travelling throughout the sample. In loop-shaped devices, a 1 / T temperature-dependent oscillation of the magnetoresistance arises with a large amplitude from the long-range coherence of low-energy pairs.  相似文献   

8.
The Bogoliubov de Gennes equation is applied to the study ofcoherence effects in the ferromagnetic superconductor/insulator/normalmetal/insulator/ferromagnetic/superconductor (FS/I/N/I/FS) junction. We calculated the Josephson current in FS/I/N/I/FS as a function of exchange field in ferromagnetic superconductor, temperature, and normal metal thickness. It is found that the Josephson critical current in FS/I/N/I/FS exhibits oscillations as a function of the length of normal metal. The exchange field always suppresses the Josephson critical current Ip for a parallel configuration of the magnetic moments of two ferromagnetic superconductor (FS) electrodes. In the antiparallel configuration, the Josephson critical current IAp at the minimum values of oscillation increases with the exchange field for strong barrier strength and at low temperatures.  相似文献   

9.
a-Si/insulator multilayers have been deposited on (0 0 1) Si by electron gun Si evaporation and periodic electron cyclotron resonance plasma oxidation or nitridation. Exposure to an O or N plasma resulted in the formation of a thin SiO2 and SiNx layer whose thickness was self-limited and controlled by process parameters. For thin-layer (2 nm) Si/SiO2 and Si/SiNx multilayers no visible photoluminescence (PL) was observed in most samples, although all exhibited weak “blue” PL. For the nitride multilayers, annealing at 750°C or 850°C induced visible PL that varied in peak energy with Si layer thickness. Depth profiling of a-Si caps on thin insulating layers revealed no detectable contamination for the SiNx layers, but substantial O contamination for the SiO2 films.  相似文献   

10.
The structural, magnetic and transport properties of sputtered Fe/Si multilayers were studied. The analyses of the data of the X-ray diffraction, resistance and magnetic measurements show that heavy atomic interdiffusion between Fe and Si occurs, resulting in multilayers of different complicated structures according to different sublayer thicknesses. The nominal Fe layers in the multilayers generally consist of Fe layers doped with Si, ferromagnetic Fe-Si silicide layers and nonmagnetic Fe-Si silicide interface layers, while the nominal Si spacers turn out to be Fe-Si compound layers with additional amorphous Si sublayers only under the condition either for the series or for the series multilayers. A strong antiferromagnetic (AFM) coupling and negative magnetoresistance (MR) effect, about 1%, were observed only in multilayers with iron silicide spacers and disappeared when -Si layers appear in the spacers. The dependences of MR on and on bilayer numbers N resemble the dependence of AFM coupling. The increase of MR ratio with increasing N is mainly attributed to the improvement of AFM coupling for multilayers with N. The dependence of MR ratio is similar to that in metal/metal system with predominant bulk spin dependent scattering and is fitted by a phenomenological formula for GMR. At 77 K both the MR effect and saturation field increase. All these facts suggest that the mechanisms of the AFM coupling and MR effect in sputtered Fe/Si multilayers are similar to those in metal/metal system. Received: 11 February 1998 / Revised: 9 March 1998 / Accepted: 9 March 1998  相似文献   

11.
ZrC/TiN and ZrC/ZrN multilayers thinner than 350 nm were grown on (100) Si substrates at a temperature of 300 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser (λ=248 nm, pulse duration τ=25 ns, 8.0 J/cm2 fluence and 40 Hz repetition rate). Cross-sectional transmission electron microscopy, Auger electron spectroscopy depth profiling and simulations of X-ray reflectivity curves indicated that there was intermixing between the deposited layers at the interfaces as well as between the first layer and the substrate. Nanoindentation investigations found hardness values between 35 and 38 GPa for the deposited multilayers. Linear unidirectional sliding wear tests were conducted using a ball-on-plate tribometer under 1 N normal force. Wear tracks were produced in a Hysitron nanoindenter with 1 μm radius diamond tip under a 500 μN load. High-resolution cross-sectional transmission electron microscopy studies of the wear tracks showed that the multilayers withstood these tests without significant damage. The results could be explained by the use of a high laser fluence during deposition that resulted in very dense and strongly adherent nanocrystalline layers.  相似文献   

12.
We have fabricated periodic multilayers that comprise either Si/Tb or SiC/Tb bilayers, designed to operate as narrowband reflective coatings near 60 nm wavelength in the extreme ultraviolet (EUV). We find peak reflectance values in excess of 20% near normal incidence. The spectral bandpass of the best Si/Tb multilayer was measured to be 6.5 nm full width at half-maximum (FWHM), while SiC/Tb multilayers have a more broad response, of order 9.4 nm FWHM. Transmission electron microscopy analysis of Si/Tb multilayers reveals polycrystalline Tb layers, amorphous Si layers, and relatively large asymmetric amorphous interlayers. Thermal annealing experiments indicate excellent stability to 100 degrees C (1 h) for Si/Tb. These new multilayer coatings have the potential for use in normal incidence instrumentation in a region of the EUV where efficient narrowband multilayers have not been available until now. In particular, reflective Si/Tb multilayers can be used for solar physics applications where the coatings can be tuned to important emission lines such as O V near 63.0 nm and Mg X near 61.0 nm.  相似文献   

13.
The mutual interplay between superconductivity and magnetism in superconductor/ferromagnet heterostructures may give rise to unusual proximity effects beyond current knowledge. Especially, spin-triplet Cooper pairs could be created at carefully engineered superconductor/ferromagnet interfaces. Here we report a giant proximity effect on spin dynamics in superconductor/ferromagnet/superconductor Josephson junctions. Below the superconducting transition temperature T_C, the ferromagnetic resonance field at X-band(~9.0 GHz) shifts rapidly to a lower field with decreasing temperature. In strong contrast, this phenomenon is absent in ferromagnet/superconductor bilayers and superconductor/insulator/ferromagnet/superconductor multilayers. Such an intriguing phenomenon can not be interpreted by the conventional Meissner effect. Instead, we propose that the strong influence on spin dynamics could be due to spin-transfer torque associated with spin-triplet supercurrents in ferromagnetic Josephson junctions with precessing magnetization.  相似文献   

14.
286 , 176 (1996)]. (1) The interdiffusion critical wavelengths were calculated as 2.00–2.04 nm at temperatures ranging from 473 to 523 K, which is equal to those of Co/C multilayers within the experimental error, indicating that the interdiffusion behaviours in the CoN/CN multilayers are still decided by the thermodynamic properties of the Co-C system. (2) The effective interdiffusivities and macroscopic diffusion coefficients are smaller. (3) The activation energy for diffusion is larger. The features imply that it is possible to improve the thermal stability of Co/C multilayers by doping with N atoms. The high-temperature annealing results imply that the destructive threshold of the CoN/CN multilayers is 100–200 °C higher than that of Co/C multilayers. The small-angle X-ray diffraction of CoN/CN soft X-ray multilayers indicates that the period expansion of the multilayers is only 4% at 400 °C, and the interface pattern still exists even if they were annealed at 700 °C. The large-angle X-ray diffraction and transmission electron microscopy analysis reveal that the crystalline process is significantly retarded if doped with N atoms, leading to a smaller grain size at higher annealing temperatures. The significant improvement of the thermal stability can be interpreted with Raman spectroscopy and X-ray photoelectron spectroscopy analysis. The Raman spectra give the evidence that the formation of the sp3 bonding in the CN sublayers can be suppressed effectively by doping with N atoms, and thus the period expansion resulting from the changes in the density of CN layers can be decreased considerably. The X-ray photoelectron spectra give information about existence of the strong covalent bonding between N atoms and the ionic bonding between Co and N atoms, which can slow down the tendency of the structural relaxation. The interstitial N atoms decrease the mobility of Co atoms, and thus the fcc Co and hcp Co coexist even though the annealing temperature is much higher than the phase transformation temperature of 420 °C, leading to the suppression of the grain growth. Received: 29 May 1997/Accepted: 8 September 1997  相似文献   

15.
董正超 《中国物理》2005,14(6):1209-1216
在超导中通过外加塞曼磁场,研究正常金属/超导/正常金属双隧道结中的量子相干输运。同时考虑从一个正常金属电极注入一电子,从另一个正常金属电极注入一空穴,推导出系统的微分电导的一般公式。研究表明,电导谱随偏压展示振荡行为,随着温度和磁场的增大,其振荡振幅被降低,且塞曼能可导致电导峰的塞曼劈裂。在隧道极限下,超导体中会形成一系列束缚态。  相似文献   

16.
芦佳  甘渝林  颜雷  丁洪 《物理学报》2021,(4):327-332
在铁磁/超导异质结中,铁磁体的交换场通过近邻效应将导致超导体准粒子态密度的塞曼劈裂.基于该效应,在外磁场不强的情况下,通过外加磁场可以有效地调节铁磁/超导界面处的交换作用,从而实现超导体在正常态和超导态之间转换,产生极大磁电阻.本文利用脉冲激光沉积方法制备了EuS/Ta异质结并研究了其电磁特性.Ta在3.6 K以下为超...  相似文献   

17.
We analyze the properties of asymmetric three-layer (FSF and FFS) heterostructures consisting of a ferromagnet (F) and a superconductor (S) in an external magnetic field. The asymmetry of FS systems can be due to the difference in the parameters characterizing the F layers (in particular, noncollinearity of the magnetizations of the ferromagnets, leading to the generation of the long-range triplet component of the superconducting condensate). We consider the case of strong scattering of conduction electrons from non-magnetic impurities (the so-called dirty limit), for which we derive the equations for the pair amplitude and corresponding boundary conditions to these equations, which are valid in the presence of an external magnetic field. We discuss possible applications of these FS heterostructures as spin switches on the basis of analysis of their phase diagrams, and we give recommendations for determining the optimal parameters required for their stable operation. The occurrence of peculiar re-entrant superconductivity in the FFS systems on an increase of the external magnetic field is predicted.  相似文献   

18.
A. V. Zaitsev 《JETP Letters》2009,90(6):475-479
The proximity effect is investigated theoretically in different superconducting structures including multilayered ferromagnet consisting of arbitrary number of metallic ferromagnet (F) layers. The in-plane exchange fields in the F-layers are supposed to be collinear. Different cases of the exchange fields ordering including the case of antiferromagnetic one. It is shown for the last case that the proximity effect (for the fixed thickness of the M-interlayer) increases with the growing number of the layers N and significantly depends on whether this number is odd or even. It is shown that under the condition of diffusive electron transport, the anomalous proximity effect is exhibited which is related with singlet component of the condensate Green’s function. Peculiarities of the proximity effect are analyzed for S-M, S-I-M-S, and S-M-S superconducting structures (S is a superconductor, I is an insulating layer). It is shown that when the M-structure consists of N seriously connected F1-N-F2-N links in which F layers are separated by normal metallic layers (N), for antiferro-magnetic ordering of the magnetization the exchange field induced enhancement of the critical current may occur.  相似文献   

19.
The current–voltage characteristics of ultrasmall superconductor–insulator–normal metal (S–I–N), and a superconductor–insulator–superconductor (S–I–S) junctions are computed in the presence of a dissipative transmission line. The amplitude of the discontinuous jump at the energy gap of a single-particle current is greatly influenced by the size of the capacitance and the impedance of the external transmission line in the small junction. The results agree with Ambegaokar–Baratoff in the limit of vanishing impedance of a transmission line or large junction capacitance.  相似文献   

20.
Near the superconducting transition temperature pairpotential behaviour and supercurrent in nonhomogeneous sandwich systems of SNS-and SINIS-types (S superconductor, N normal metal, I insulator) are theoretically investigated. The proximity effect is taken into account by using an extrapolation length which relates the order parameter value to its first derivative at interfaces. In frame of the microscopic theory of superconductivity this extrapolation length follows with the help of an appropriate variational principle which has been checked on systems which allow exact solutions. The resulting supercurrent expressions are discussed in detail with respect to temperature dependence and impurity influence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号