首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total reflection X-ray fluorescence analysis (TXRF) offers a nondestructive qualitative and quantitative analysis of trace elements. Due to its outstanding properties TXRF is widely used in the semiconductor industry for the analysis of silicon wafer surfaces and in the chemical analysis of liquid samples. Two problems occur in quantification: the large statistical uncertainty in wafer surface analysis and the validity of using an internal standard in chemical analysis. In general TXRF is known to allow for linear calibration. For small sample amounts (low nanogram (ng) region) the thin film approximation is valid neglecting absorption effects of the exciting and the detected radiation. For higher total amounts of samples deviations from the linear relation between fluorescence intensity and sample amount can be observed. This could be caused by the sample itself because inhomogeneities and different sample shapes can lead to differences of the emitted fluorescence intensities and high statistical errors. The aim of the study was to investigate the elemental distribution inside a sample. Single and multi-element samples were investigated with Synchrotron-radiation-induced micro X-ray Fluorescence Analysis (SR-μ-XRF) and with an optical microscope. It could be proven that the microscope images are all based on the investigated elements. This allows the determination of the sample shape and potential inhomogeneities using only light microscope images. For the multi-element samples, it was furthermore shown that the elemental distribution inside the samples is homogeneous. This justifies internal standard quantification.  相似文献   

2.
The aim of this work consisted on the implementation of sufficiently accurate and sensitive analytical procedure for the analysis of metal concentration in rainwater. Different sample preparation procedures were tested to achieve the required concentration prior to direct total reflection X-ray fluorescence (TXRF) analysis. TXRF and anodic stripping voltammetry (ASV) were compared in regard to achieved detection limits, precision and accuracy.  相似文献   

3.
A complete analysis of a landfill leachate coming from a landfill site of several years old was performed with a total reflection X-ray fluorescence (TXRF) spectrometer in comparison with an inductively coupled plasma optical emission spectroscopy (ICP-OES). The results of the two analytical techniques are compared and advantages and drawbacks emphasized. The TXRF analytical technique appears a reliable, economic, rapid and simpler technique for the everyday monitoring of the composition of the landfill leachate before the purification treatment and after the treatment to check the quality of the resulting purified water. The TXRF and the ICP-OES analytical techniques were also employed in the analysis of three groundwater samples.  相似文献   

4.
 The actual detection limits of total reflection X-ray fluorescence (TXRF) are determined and compared to those of destructive physical analytical methods like secondary ion mass spectrometry (SIMS) and chemical methods like vapour phase decomposition in combination with inductively coupled plasma-mass spectrometry (VPD-ICP-MS). The elements Ca, Ti, Cr, Fe, Cu were analyzed on a Si wafer with 10 nm thermal oxide using TXRF and VPD-ICP-MS. The deviation of the TXRF and the VPD-ICP-MS results is less than 30%. The thickness, composition and density of a Co/Ti two-layer stack were determined using angle dependent total reflection and grazing incidence X-ray fluorescence (A-TXRF). The obtained data were compared with X-ray reflectometry (XRR) and energy filtered transmission electron microscopy (EFTEM). The agreement between TEM and A-TXRF is excellent for the determination of the thickness of the metal layers. From these results we conclude, that A-TXRF permits the accurate determination of composition, thickness and density of thin metallic layers. The results are discussed regarding detection efficiency, acquisition time, accuracy and reproducibility.  相似文献   

5.
Multielemental determinations in samples of various types of bee honey, pollen and bee tissue have been carried out using total reflection X-ray fluorescence spectrometry (TXRF) and radioisotope excited X-ray fluorescence spectrometry (XRF). The objective was to establish whether the elemental content of bee honey, in particular, correlates with any useful information about the environment, variety of honey, etc. An attempt has also been made to determine the X-ray techniques' ability to compete with atomic absorption spectrometry (AAS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES), with regard to elemental sensitivity, accuracy, sample preparation procedures, and in particular, economic performance, which is very important in selecting an appropriate technique for the analysis of large numbers of samples. The results confirm the advantages of the TXRF method for trace element analysis, but only when utilising monochromatic excitation and selecting a proper sample preparation procedure. The radioisotope XRF technique, which does not require any sample preparation, is still very competitive in analysis of elements with concentrations above a few ten ppm. Preliminary results also confirm some correlations between the elemental content of honey and the status of the environment, and encourage further work in this direction  相似文献   

6.
Total reflection X-ray fluorescence (TXRF) analysis is an established technique for trace-element analysis in various types of samples. Though expensive large-scale systems restricted the applications in the past, in this study the capability of a benchtop system for trace elemental analysis is reported. The suitability of this system for the mobile on-site analysis of heavy metal contaminated soils and sediments is reported as well as the possibilities and restrictions of TXRF for additional applications, including trace-element analysis of water, glass and biological samples.  相似文献   

7.
X-ray fluorescence (XRF) and total-reflection X-ray fluorescence (TXRF) techniques suited well for a multi-element determination of K, Ca, Mn, Fe, Cu, Zn, Rb, and Sr in some Syrian medicinal plant species. The accuracy and the precision of both techniques were verified by analyzing the Standard Reference Materials (SRM) peach-1547 and apple leaves-1515. A good agreement between the measured concentrations of the previously mentioned elements and the certified values were obtained with errors less than 10.7% for TXRF and 15.8% for XRF. The determination of Br was acceptable only by XRF with an error less than 24%. Furthermore, the XRF method showed a very good applicability for the determination of K, Ca, Mn, Fe, Cu, Zn, Rb, Sr, and Br in infusions of different Syrian medicinal plant species, namely anise (Anisum vulgare), licorice root (Glycyrrhiza glabra), and white wormwood (Artemisia herba-alba).  相似文献   

8.
X-ray absorption fine structure (XAFS) experiments in fluorescence mode have been performed in total reflection excitation geometry and conventional 45°/45° excitation/detection geometry for comparison. The experimental results have shown that XAFS measurements are feasible under normal total reflection X-ray fluorescence (TXRF) conditions, i.e. on droplet samples, with excitation in grazing incidence and using a TXRF experimental chamber. The application of the total reflection excitation geometry for XAFS measurements increases the sensitivity compared to the conventional geometry leading to lower accessible concentration ranges. However, XAFS under total reflection excitation condition fails for highly concentrated samples because of the self-absorption effect.  相似文献   

9.
Oolong tea from the Fujian Province is very popular at home and abroad, especially in Taiwan and Southeast Asia. In order to elucidate the possibilities to compensate the need state of people to essential elements by the national drink,a set of samples of oolong tea from the Fujian Province were analyzed by total reflection X-ray fluorescence (TXRF), a fairly new efficient method in the field of multielement analysis. After addition of a single internal standard element (e.g. gallium) to a solution of tea leaves digested by acid or to an acidified tea infusion, a portion of 5 μ1 was dried on a sample carrier and then analyzed by TXRF.  相似文献   

10.
Summary Total reflection X-ray fluorescence (TXRF) was used to evaluate the availability and contamination of inorganic elements in sediment samples from Atibaia River, located at Piracicaba Basin, near the Campinas region, S?o Paulo State, Brazil. The total contents (geological matrix) and the concentration of elements weakly linked to the sediment (available fraction) were determined. The availability of these elements was evaluated through the ratios between available fractions and total contents. The results showed that the elements Mn, Ni, Cu and Zn are easily available in the aquatic environment.  相似文献   

11.
A chemical microchip, which has a flat region on the surface, was recently designed for total reflection X-ray fluorescence (TXRF) analysis. A sample solution was introduced from an inlet by a microsyringe and flowed into a microchannel. Finally it overflowed from the well-type microchannel on the flat region. The sample solution on this region was dried, and then measured by TXRF. The TXRF spectra could be measured with a low background level. This preliminary result indicated that the edge of the well-type channel would not cause a serious problem for TXRF analysis. In addition, a good linear relationship was obtained for Zn Kα in Zn standard solution. This suggests that quantitative analysis by TXRF is feasible in combination with a chemical microchip.  相似文献   

12.
Total reflection X-ray fluorescence spectrometry (TXRF) is presented as a genuine surface analytical technique. Its low information depth is shown to be the characteristic feature differentiating it from other energy dispersive X-ray fluorescence methods used for layer and surface analysis. The surface sensitivity of TXRF and its analytical capability together with the limitations of the technique are discussed here using typical applications including the contamination control of silicon wafers, thin layer analysis and trace element determination. For buried interfaces and implantation depth profiles in silicon a combination of TXRF and other techniques has been applied successfully. The TXRF method has the particular advantage of being calibrated without the need for standards. This feature is demonstrated for the example of the element arsenic.  相似文献   

13.
The influence of analyte mass concentration on determination of detection limits in X-ray fluorescence spectrometry has been investigated experimentally. Both the total reflection X-ray fluorescence (TXRF) and the conventional energy-dispersive X-ray fluorescence techniques have been used to derive the dependence of analyte mass concentration on the values of detection limits. Results obtained indicate that values of detection limits are optimum, or in other words, they are closer to the true detection limit of the technique, when analyte concentrations are in the range of 10 times of the detection limit.  相似文献   

14.
The concentration of copper in traditional homemade alcoholic distillates produced in Venezuela (Cocuy de Penca) were determined by total reflection X-ray fluorescence (TXRF) using vanadium as internal standard. The results were compared to those obtained by flame atomic absorption spectrometry (FAAS). Three preparative methods of addition of vanadium were compared: classical internal standard addition, ‘layer on layer’ internal standard addition and in situ addition of internal standard. The TXRF procedures were accurate and the precision was comparable to that obtained by the FAAS technique. Copper levels were above the maximum allowed limits for similar beverages. Zinc and iron in commercial and homemade distilled beverages were also analyzed by TXRF with in situ addition of internal standard demonstrating the usefulness of this technique for trace metal determination in distillates.  相似文献   

15.
The total reflection X-ray fluorescence (TXRF) method has been used for the analysis of various types of solid materials of biological, geological and environmental origin. The sample preparation step prior to TXRF measurements has been optimized for the various solid samples, including their decomposition by applying both a microwave oven and a PTFE bomb. Complete procedures for the optimized decomposition from the point of view of speed and completeness of digestion, as well as of the overall precision and accuracy are presented.  相似文献   

16.
In this study, a BioDot BioJet dispensing system was investigated as a nanoliter sample deposition method for total reflection X-ray fluorescence (TXRF) analysis. The BioDot system was programmed to dispense arrays of 20 nL droplets of sample solution on Si wafers. Each 20 nL droplet was approximately 100 μm in diameter. A 10 × 10 array (100 droplets) was deposited and dried in less than 2 min at room temperature and pressure, demonstrating the efficiency of the automated deposition method. Solutions of various concentrations of Ni and Ni in different matrices were made from stock trace element standards to investigate of the effect of the matrix on the TXRF signal. The concentrations were such that the levels of TXRF signal saturation could be examined. Arrays were deposited to demonstrate the capability of drying 100 μL of vapor phase decomposition-like residue in the area of a typical TXRF detector.  相似文献   

17.
Elemental concentrations of aquatic insect larvae and attached algae in an uncontaminated river were analyzed by instrumental neutron activation analysis (INAA) via the k0-standardization method. The aquatic insect larvae found were all intolerant species. No significant difference was observed in the elemental concentrations of aquatic insect larvae and attached algae along the river. Similar elemental concentrations were observed in the aquatic insect larvae collected at a fixed sampling point for two years. An analysis by the ratio-matching technique indicated a higher generic relationship between aquatic insect larvae and attached algae than river water.  相似文献   

18.
Phytoremediation is an emerging technology that employs the use of higher plants for the clean-up of contaminated environments. Progress in the field is however handicapped by limited knowledge of the biological processes involved in plant metal uptake, translocation, tolerance and plant–microbe–soil interactions; therefore a better understanding of the basic biological mechanisms involved in plant/microbe/soil/contaminant interactions would allow further optimization of phytoremediation technologies. In view of the needs of global environmental protection, it is important that in phytoremediation and plant biology studies the analytical procedures for elemental determination in plant tissues and soil should be fast and cheap, with simple sample preparation, and of adequate accuracy and reproducibility. The aim of this study was therefore to present the main characteristics, sample preparation protocols and applications of X-ray fluorescence-based analytical techniques (energy dispersive X-ray fluorescence spectrometry—EDXRF, total reflection X-ray fluorescence spectrometry—TXRF and micro-proton induced X-ray emission—micro-PIXE). Element concentrations in plant leaves from metal polluted and non-polluted sites, as well as standard reference materials, were analyzed by the mentioned techniques, and additionally by instrumental neutron activation analysis (INAA) and atomic absorption spectrometry (AAS). The results were compared and critically evaluated in order to assess the performance and capability of X-ray fluorescence-based techniques in phytoremediation and plant biology studies. It is the EDXRF, which is recommended as suitable to be used in the analyses of a large number of samples, because it is multi-elemental, requires only simple preparation of sample material, and it is analytically comparable to the most frequently used instrumental chemical techniques. The TXRF is compatible to FAAS in sample preparation, but relative to AAS it is fast, sensitive and multi-elemental. The micro-PIXE technique requires rather expensive instrumentation, but offers multi-elemental analysis on the tissue and cellular level.  相似文献   

19.
The measurement of technetium in inorganic solutions is reported for the first time using total reflection X-ray fluorescence (TXRF). Sodium pertechnetate solutions eluted from decayed 99Mo generators were efficiently excited with a silver-anode X-ray tube in a standard configuration. The technique has been developed to aid establishing the extent of stoichiometric relations between Tc and a ligand in organo-metallic compounds synthesized with diagnostic purposes for nuclear medicine. The precision attained was 5% and the detection limit achieved for Tc in inorganic solutions by TXRF at 1000 s was 0.039 μg/ml.  相似文献   

20.
In-fab analytical methods are of increasing interest for wafer monitoring in advanced semiconductor device manufacturing. In particular, an analytical method which allows non-destructive measurements of implant dose and surface roughness would be very beneficial. We investigated the capabilities of total reflection X-ray fluorescence spectrometry (TXRF) to determine implant dose and surface roughness. These advanced applications of TXRF can be used to monitor processes like implantation, rapid thermal annealing, and chemical mechanical polish. As implants in Si at implant energies of 2 keV, 10 keV and 50 keV were studied. Angle resolved TXRF measurements were performed with a commercial Rigaku 3750 system. The TXRF results were compared to secondary ion mass spectrometry (SIMS) measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号