首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Two modular synthetic approaches for the preparation of novel wide bite angle diphosphine ligands containing stereogenic P-atoms have been developed, leading to compounds (S,S)-2,2′-bis(methylphenylphosphino)diphenyl ether (L1) and (S,S)-2,2′-bis(ferrocenylphenylphosphino)diphenyl ether (L2) in very good diastereomeric ratios. Both protocols involve diphenyl ether as backbone and (2RP,4SC,5RC)-(+)-3,4-dimethyl-2,5-diphenyl-1,3,2-oxazaphospholidine borane (RP)-5 as initial auxiliary to induce chirality at phosphorus. The absolute configuration of intermediates (S,S)-9-(BH3)2 and (R,R)-10-(BH3)2 as well as the ligands (S,S)-L1-BH3 and (S,S)-L2 was determined by X-ray crystallographic analysis.  相似文献   

2.
《Tetrahedron》1986,42(6):1763-1768
(-)-(1S,3S,5R,6S,8R,10R)-Trishomocubanethanoic acid (5) of known absolute configuration and absolute rotation was converted into (+)-(1S,3S,5S,6S,8R,10R)-2-bromoethynyl-D3-trishomocubane (27) of C3 symmetry. 1,3,5,7-Tetraethynyladamantane (22), with Td symmetry, was prepared from 1,3,5,7-tetrakis(hydroxymethyl)adamantane(13). Coupling of the C3-component 27 with the Td component 22 was successfully accomplished by Chodkiewicz and Cadiot's procedure providing (+)-1,3,5,7-tetrakis[2-(1S,3S,5R,6S,8R,10R)-D3-trishomocubanylbuta-1,3-diynyl]adamantane(4) whose highest attainable static and time-averaged dynamic symmetry are T and (C3)4 XXX T,respectively.  相似文献   

3.
《Tetrahedron: Asymmetry》2005,16(6):1189-1197
A series of enantiopure 1,4-amino alcohols with a [3]ferrocenophane backbone have been synthesized. Candida rugosa lipases were used in a key step allowing the resolution of amino alcohol (1S,Rp)-1. Two other amino alcohols (1S,2S,Rp)-2 and (1S,2S,Rp)-3 were prepared starting from (1S,Rp)-1. The new ligands have been used in the asymmetric ethylation of benzaldehyde by diethylzinc and gave good catalytic properties. One of these ligands was particularly efficient, while the yield of the catalytic test reaction was near to 100% and the enantiomeric excess was about 80%. All the ligands directed the catalytic process towards the same (1R)-1-phenylpropanol.  相似文献   

4.
《Tetrahedron: Asymmetry》1999,10(18):3493-3505
Perhydropyrimidinone (S)-1 is alkylated with very high diastereoselectivity to give trans products (2S,5R)-3, (2S,5R)–4 and (2S,5R)-5. Dialkylation of (S)-1 also proceeds with complete stereoselectivity to afford adducts (2S,5R)-6, (2S,5S)-6, (2S,5R)-7 and (2S,5S)-7. Hydrolysis (6N HCl, 100°C) of monoalkylated derivative (2S,5R)-3 gives enantiopure α-substituted β-amino acid (R)-8. Hydrolysis of dialkylated adducts 6 and 7 affords enantiopure α,α-disubstituted β-amino acids (R)- or (S)-9 and (R)- or (S)-10. Related iminoester (2S,6S)-2 is alkylated with complete diastereoselectivity to give products (2S,6S)-1113 whose hydrolysis under relatively mild conditions (2N CF3CO2H, CH3OH, 100°C) affords enantiopure N-benzoylated β,β-disubstituted β-amino acid esters (S)-1416, with intact double bonds in the olefinic substituents.  相似文献   

5.
《Tetrahedron: Asymmetry》1998,9(9):1605-1614
Conjugate addition of but-3-enylmagnesium bromide to the chiral crotonamide (R)-(+)- and (S)-(−)-3, followed by hydrolysis and oxidation, afforded enantiopure (R)-(+)- and (S)-(−)-3-methyladipic acids 8, respectively. Conjugate addition of vinylmagnesium chloride to the chiral crotonamide and cinnamamides (R)-(+)-35, followed by hydrolysis, gave the alkenoic acids (S)-1214, respectively. Iodolactonization of the latter led to the 5-iodomethyllactones (+)-1517, which were reduced by means of n-Bu3SnH into the trans-disubstituted 5-methyllactones (+)-1921, respectively. Treatment of the iodomethyllactone (+)-16 with LiMe2Cu or n-Bu2CuLi furnished the trans-5-alkyl-4-phenyllactones (−)-22 or (+)-23.  相似文献   

6.
《Tetrahedron: Asymmetry》1999,10(17):3273-3276
Lipases from porcine pancreas, Candida cylindracea and Mucor miehei (adsorbed on support, Lipozyme® IM) catalysed in t-butylmethylether the alcoholysis of rac-conduritol-B peracetate, (±)-1, by n-butanol to give enantiopure (2S,3S)-diacetoxy-(1R,4R)-dihydroxycyclohex-5-ene, (−)-3, and (1S,2R,3R,4S)-tetraacetoxy-cyclohex-5-ene, (+)-1. The enantioforms (+)- and (−)-conduritol-B, obtained after chemical hydrolysis of (−)-3 and (+)-1, respectively, may be employed to prepare both the enantiomers of conduritol-B epoxide and cyclophellitol, powerful inhibitors of glycosidases.  相似文献   

7.
An adaptation of Kagan’s method for preparing 2-substituted ferrocenecarboxaldehydes has allowed us to directly prepare enantiopure (Sp)-2-chloromercurio-ferrocenecarboxaldehyde, (Sp)-3. Subsequent condensation of this aldehyde with (1R,2R)-(+)-1,2-diphenyl-1,2-ethanediamine ((R,R)-4) yielded a novel, enantiopure bis-cyclomercurated ferrocenylimine, (Sp,Sp,Rc,Rc)-N,N-bis(2-(chloromercurio)ferrocenylidene)-1,2-diphenylethane-1,2-diimine ((Sp,Sp,Rc,Rc)-5). In addition to the chiroptical data collected for both (Sp)-3 and (Sp,Sp,Rc,Rc)-5, the solid-state structure and absolute configuration of (Sp,Sp,Rc,Rc)-5 were confirmed by X-ray crystallography.  相似文献   

8.
《Tetrahedron: Asymmetry》1999,10(13):2515-2522
The syntheses of enantiopure tetraazamacrocycles analogous to cyclam, (S,S)-3, (R,R)-3 and (S,S,S,S)-4, have been carried out. NMR and semiempirical studies of 3 have revealed that this compound presents a rigid conformation with C2 symmetry, which is stabilized by intramolecular bifurcated hydrogen bonds. Structural studies for macrocycle 4 have shown that the presence of two cyclohexane rings of (S,S) configuration leads to the loss of the D2 symmetry in solution, which is in agreement with the AM1 calculated structure.  相似文献   

9.
An efficient method for the synthesis of (1S,2R,4R,5S)- and (1R,2R,4R,5S)-2-amino-4,5-dihydroxycyclohexanecarboxylic acids (?)-6 and (?)-9 and (1R,2R,3S,4R)- and (1S,2R,3S,4R)-2-amino-3,4-dihydroxycyclohexanecarboxylic acids (?)-15 and (?)-18 was developed by using the OsO4-catalyzed oxidation of Boc-protected (1S,2R)-2-aminocyclohex-4-enecarboxylic acid (+)-2 and (1R,2S)-2-aminocyclohex-3-enecarboxylic acid (+)-11. Good yields were obtained. The stereochemistry of the synthesized compounds was proven by NMR spectroscopy.  相似文献   

10.
《Tetrahedron: Asymmetry》2006,17(19):2775-2780
Enantiopure (−)-(1S,3S)-2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropanecarboxamide 2 and (+)-(1R,3R)-2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropanecarboxylic acid 3 were easily obtained from a multigram scale biotransformation of racemic amide or nitrile in the presence of Rhodococcus erythropolis AJ270 whole cell catalyst under very mild conditions. Coupled with efficient and convenient chemical manipulations, comprising mainly of the Curtius rearrangement, oxidation, and reduction reactions, chiral C2-symmetric (1S,2S)-3,3-dimethylcyclopropane-1,2-diamine 6 and ((1R,3R)-3-(aminomethyl)-2,2-dimethylcyclopropyl)methanamine 8 and pseudo-C2-symmetric (1S,3S)-3-(aminomethyl)-2,2-dimethylcyclopropanamine 11 were prepared. These were also transformed into the corresponding chiral salen derivatives 12, 13, and 14, respectively, in almost quantitative yields.  相似文献   

11.
Naturally occurring (1S,2R,3R,5R,7aR)-1,2-dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine [(+)-hyacinthacine A6, 2] together with unnatural (1S,2R,3R,7aS)-1,2-dihydroxy-3-hydroxymethylpyrrolizidine [(+)-7a-epi-hyacinthacine A1, 3] and (1S,2R,3R,5S,7aS)-1,2-dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine [(+)-5,7a-diepi-hyacinthacine A6, 4] have been synthesized from a DALDP derivative [5, (2R,3S,4R,5R)-3,4-dibenzyloxy-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine], as the homochiral starting material. The synthetic process employed took advantages of Wittig methodology followed by internal lactamization, in the case of (+)-7a-epi-hyacinthacine A1 (3), and reductive amination for (+)-hyacinthacine A6 (2) and (+)-5,7a-diepi-hyacinthacine A6 (4).  相似文献   

12.
When (t-Bu)2PCH2CHCH2CH2 is combined with [IrCl(C8H14)2]2 in toluene, the σ-bound cyclopropane complexes
(P(t-Bu)2CH2CHCH2CH2) (1a, 1b) are formed. Complexes 1a,1b react readily with H2 to form IrClH2P(t-Bu)2CH2CHCH2CH2)2 (2). In polar solvents 1a,1b isomerize to the σ-vinyl chelated complex IrClH(P(t-Bu)2CH2C(CH3)CH)(P(t-Bu)2CH2CHCH2CH2) (3). The structure of this 5-coordinate, 16-electron IrIII complex was deduced from spectroscopic data, reaction chemistry, and from the crystal structure of its CO adduct (4). Compound 4 crystallizes in the monoclinic space group C2h5-P21/n (a 15.610(14), b 15.763(16), c 11.973(13) Å, and β 104.74(5)°) with 4 molecules per unit cell. The final agreement indices for 2326 reflections having Fo2 > 3σ(Fo2) are R(F) = 0.089 and Rw(F) = 0.095 (271 variables) while R(F2) is 0.148 for the 3423 unique data. Bond lengths in the 5-atom chelate ring IrPCCC are IrP 2.341(4), PC 1.857(26), CC 1.520(30), CC 1.341(25), and CIr 1.994(21) Å. The IrCl distance is 2.479(5) Å.  相似文献   

13.
《Tetrahedron: Asymmetry》1998,9(21):3881-3888
Double alkylation of enantiopure N,N-acetal pyrimidinone (S)-1, a masked chiral derivative of β-alanine prepared from (S)-asparagine, proceeds with high stereoselectivity to give C(5) disubstituted adducts (2S,5R)-6, (2S,5S)-6, (2S,5R)-7, and (2S,5S)-7. Acid hydrolysis of these derivatives affords enantiopure α,α-dialkylated β-amino acids (R)-8, (S)-8, (R)-9, and (S)-9 in very good yields.  相似文献   

14.
The air-stable, mixed main group-transition metal, trinuclear sandwich oxygen tripod 2/1 complexes, {η5-C5H5Co[P(OC2H5)2O]3}2M, (1, M = Sn): C34H70Co2O18P6Sn, a 18.871(12), b 22.461(12), c 12.671(7) Å, β 92.53(5)°, monoclinic space group P21/a, dcalc 1.472 g cm−3, Z = 4, R = 9.5%: 2 (M = Pb): C34H70Co2O18P6Pb, a 18.787(8), b 22.397(9), c 12.674(3) Å, β 92,01(3)°, monoclinic space group P21/a, dcalc 1.594 gcm−3, Z = 4, R = 7.2%, have been subjected to single crystal X-ray analysis. Both complexes show a stereochemically active lone pair at the metal and coordination to two tridentate η5-C5H5Co[P(OC2H5)2O]3 groups. The angles through the MO6 units are CoMCo 149.04(14)° and 150.96(7)° for M = Sn and Pb, respectively. The tilting of the two tripod ligand moieties is reflected in the MO internuclear distances which range from 2.24(3) to 2.83 (3) Å for M-Sn and 2.40 (2) to 2.66(3) Å for M = Pb, differences of 0.59(3) and 0.26(3) Å, respectively. The average distances are 2.48(3) and 2.51(2) Å for 1 and 2 which are isostructural.  相似文献   

15.
《Polyhedron》1987,6(7):1577-1585
Reaction of [ReOCl3(PPh3)2] with bromophenylhydrazine in methanol yields [ReCl(N2C6H4Br)2(PPh3)2] (1). Complex 1 reacts with arylthiolates to give mixtures of [Re(SAr)(N2C6H4Br)2(PPh3)2] (2) and [Re2(SAr)7(NNR)2]. Complexes 1 and 2 display trigonal bipyramidal geometries with the phosphine ligands occupying the axial sites. A significant feature of the structures is the nonequivalence of the rhenium-diazenido moieties, such that for 1 the ReN(1) and N(1)N(2) distances are 1.80(2) and 1.24(3) Å, while ReN(3) and N(3)N(4) are 1.73(2) and 1.32(3) Å, and for 2 the ReN distances are 1.73(1) and 1.80(2)° with corresponding NN distances of 1.32(2) and 1.25(2) Å. Reaction of (PPh4)[ReO(SPh)4] (3) with unsymmetrically disubstituted hydrazines affords complexes of the type [ReO(SPh)3(NMRR′)] (R = Me, R′ = Ph for 4). Complexes 3 and 4 display distorted square pyramidal geometries with the oxo groups apical. The significant feature of the structure of 4 is the nonlinear ReN(1)N(2) linkage, exhibiting an angle of 145.6(10)°. The angle does not appear to correlate with a significant contribution from a valence form with sp2 hybridization at the α-nitrogen. Crystal data: 1: monoclinic space group, P21/n, a = 12.216(2) Å, b = 19.098(2) Å, c = 20.257(4) Å, β = 106.20(1)°, V = 4538.3(8) Å3 to give Z = 4; structure solution and refinement based on 1905 reflections converged at R = 0.070. 2: monoclinic space group P21/n, a = 14.393(2) Å, b = 18.842(3) Å, c = 20.717(4)Å, β = 110.26(1)°, V = 5270.5(8) Å3 to give Z = 4 for D = 1.53 g cm−1; structure solution and refinement based on 4249 reflections to give R = 0.070. 3: monoclinic space group P21/n, a = 12.531(2) Å, b = 24.577(4) Å, c = 16.922(3) Å, β = 99.06(1)°, V = 5146.2(9) Å3, D = 1.36 g cm−3 for Z = 4, 2912 reflections, R = 0.050. 4: monoclinic space group p21/n, a = 16.137(2) Å, b = 9.863(2) Å, c = 16.668(2) Å, β = 111.12(1)°, V = 2474.7(6) Å3, D = 1.74 g cm−3 for Z = 4, 2940 reflections, R = 0.066.  相似文献   

16.
《Tetrahedron: Asymmetry》2001,12(3):357-360
A new and efficient methodology for the enantiopure synthesis of (3R,2aR)-(−)-3-phenyl-hexahydro-oxazolo[3,2-a]pyridin-5-one 3 starting from (1′R)-(−)-1-(2′-hydroxy-1′-phenyl-ethyl)-(1H)-pyridin-2-one 1 is described. In addition, the enantiospecific synthesis of (S)-(+)-coniine hydrochloride 6 in good yield from 3 is reported.  相似文献   

17.
A full account of the novel and flexible approach to hydroxylated 8-azabicyclo[3,2,1]octan-3-ones and 9-azabicyclo[3,3,1]nonan-3-ones is presented.Using keto-lactams as the starting materials,this two-step method consists of silyl enol ether formation with TBDMSOTf,lactam activation with Tf2O/DTBMP,and halide-promoted cyclization.Radical dechlorination of the resulting 1-halotropan-3-ones led to the corresponding hydroxylated tropan-3-ones,which can be hydrogenated to yield3,6-dihydroxytropanes.Starting from optically active keto-lactams,the method has been applied to the enantioselective syntheses of(+)-(1S,3S,5R,6S)-pervilleine C(6),(+)-(1S,3R,5S,6R)-valeroidine(3),(+)-(1S,3S,5R,6S)-dibenzoyloxytropane(8),and(+)-(1S,3S,5R,6S)-merredissine(9).  相似文献   

18.
《Tetrahedron: Asymmetry》2000,11(3):835-841
Chiral C2-symmetric diphenylselenophosphoramides 1 and 2 were prepared from the reaction of diphenylselenophosphinic chloride with (1R,2R)-(−)-1,2-diaminocyclohexane and (1R,2R)-(+)-1,2-diphenylethylenediamine, respectively, in high yields. Another novel chiral ligand 3 was prepared from the reaction of diphenylselenophosphinic chloride with (R)-(+)-1,1′-binaphthyl-2,2′-diamine using butyllithium as the base. The ligands were used as catalytic chiral ligands in the titanium(IV) alkoxide-promoted enantioselective addition reaction of diethylzinc to aldehydes.  相似文献   

19.
《Tetrahedron: Asymmetry》1999,10(17):3365-3370
The synthesis of enantiomerically pure (4aS,5R)-hexahydro-4a,5-dimethyl-2(3H)-naphthalenone (−)-1 is described for the first time. The synthesis starts from (R)-3-methylcyclohexanone and involves the preparation of Piers enol lactone 6 in its enantiopure form as the key intermediate. Treatment of (+)-6 with methyl lithium followed by an intramolecular aldol reaction gives the bicyclic enone (−)-1.  相似文献   

20.
A novel and simple process for the preparation of enantiomerically pure (SS)-benzenesulfinamide (SS)-3a, (SS)-p-toluenesulfinamide (SS)-3b, (SS)-p-chloro-benzenesulfinamide (SS)-3c and (SS)-p-fluorobenzenesulfinamide (SS)-3d has been developed. The treatment of arylsulfinyl chlorides with (R)-N-benzyl-1-phenylethanamine in the presence of excess triethylamine gave diastereomeric mixtures of N-benzyl-N-(1-phenylethyl)-arylsulfinamides 1, which underwent spontaneous crystallization to furnish diastereomerically pure (R,SS)-N-benzyl-N-(1-phenylethyl)-arylsulfinamides (R,SS)-1a-1d in 28%, 29%, 27% and 31% yields, respectively. The diastereomerically pure compounds (R,SS)-1 were then converted into four enantiopure (RS)-methyl arylsulfinates (RS)-2, and finally into four enantiopure (SS)-arylsulfinamides (SS)-3 in good yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号