首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A system for on-line preconcentration and determination of platinum by ultrasonic nebulization (USN) coupled to inductively coupled plasma optical emission spectrometry (ICP-OES) was studied. It is based on the chemical sorption of platinum on a column packed with polyurethane foam loaded with thiocyanate reagent. The optimization step was carried out using two level full factorial design. Three variables (pH, loading flow rate (LFR) and eluent concentration) were regarded as factors in the optimization. Results of the two level factorial design 23 with three replicates of the central point for platinum preconcentration, based on the variance analysis (ANOVA), demonstrated that the factors and their interactions are not statistically significant. The proposed procedure allowed the determination of platinum with a detection limit of 0.28 μg l−1. The precision for 10 replicate determinations at 10.0 μg l−1 Pt level was 3.8% relative standard deviation (R.S.D.), calculated from the peak heights obtained. A total enhancement factor of 100 was obtained with respect to ICP-OES using pneumatic nebulization (10 for USN and 10 for preconcentration). A sampling frequency of 50 samples per hour was obtained. The effect of other ions in concentrations agreeing with water samples was studied. The addition/recovery experiments in the samples analyzed demonstrated the accuracy and applicability of the system developed for platinum determination in spiked water samples.  相似文献   

2.
A method for the preconcentration and speciation of chromium was developed. On-line preconcentration and determination were obtained using inductively coupled plasma optical emission spectrometry (ICP-OES) coupled with flow injection. To determinate the chromium (III) present in parenteral solutions, chromium was retained on activated carbon at pH 5.0. On the other hand, a step of reduction was necessary in order to determine total chromium content. The Cr(VI) concentration was then determined by difference between the total chromium concentration and that of Cr(III). A sensitivity enrichment factor of 70-fold was obtained with respect to the chromium determination by ICP-OES without preconcentration. The detection limit for the preconcentration of 25 ml of sample was 29 ng l−1. The precision for the 10 replicate determinations at the 5 μg l−1 Cr level was 2.3% relative standard deviation, calculated with the peak heights. The calibration graph using the preconcentration method for chromium species was linear with a correlation coefficient of 0.9995 at levels near the detection limits up to at least 60 μg l−1. The method can be applied to the determination and speciation of chromium in parenteral solutions.  相似文献   

3.
An on-line bismuth preconcentration and determination system implemented with hydride generation inductively coupled plasma atomic emission spectrometry (HG-ICP-AES) associated to flow injection (FI) was studied. Quinolin-8-ol and Amberlite XAD-7 were used for the retention of bismuth, at pH 4.5. The bismuth complex was removed from the micro-column with nitric acid. The detection limit value for the preconcentration of 100 ml of aqueous solution was 0.02 ng ml(-1) with a relative standard deviation (R.S.D.) of 3.5%, calculated from the peak heights obtained. The calibration graph using the preconcentration system for bismuth was linear with a correlation coefficient of 0.999 at levels near the detection limits up to at least 100 ng ml(-1). The method was successfully applied to the determination of bismuth in human urine samples.  相似文献   

4.
A time-based sequential dispensing on-line column preconcentration procedure for mercury determination at trace levels by cold vapour generation inductively coupled plasma atomic emission spectrometry (CV-ICP-AES), by means of a unified module of a preconcentration column and a gas–liquid separator (PCGLS) is described. The complex of mercury formed on-line with ammonium pyrrolidine dithiocarbamate (APDC) is retained on the surface of the hydrophobic poly(tetrafluoroethylene) (PTFE) turnings, which are packed into the lower compartment of the PCGLS. Subsequently, mercury vapour is generated directly on the PTFE turnings by reductant SnCl2 and separated from the liquid mixture via the PCGLS by argon purge gas. The outlet of the PCGLS is connected directly to the torch adapter of the plasma without the normal spray chamber and nebulizer. With 60-s preconcentration time and 12.0 mL min–1 sample flow rate, the sampling frequency is 30 h–1. The calibration curve is linear over the concentration range 0.02–5.0 g L–1, the detection limit (cL) is 0.01 g L–1 and the relative standard deviation (sr) is 3.1% at the 1.0 g L–1 level. The proposed method was evaluated by analysis of BCR CRM 278 (Mytilus Edulis) reference material and applied to the determination of total mercury in digested urine, blood and hair samples.  相似文献   

5.
A flow-injection analysis (FIA) system incorporating a micro-column of ZrO2 has been used for the development of an on-line multi-element method for the simultaneous preconcentration and determination of Al, Bi, Cd, Co, Cr, Cu, Fe, Ga, In, Mn, Mo, Ni, Pb, Tl, V, Sb, Sn, and Zn by inductively coupled plasma atomic emission spectrometry (ICP–AES). The conditions for quantitative and reproducible preconcentration, elution, and subsequent on-line ICP–AES determination were established. A sample (pH 8) is pumped through the column at 3 mL min–1 and sequentially eluted directly into the ICP–AES with 3 mol L–1 HNO3. With a sample volume of 100 mL and an elution volume of 1 mL signal enhancement 100 times better than for conventional continuous aspirating systems was obtained for the elements studied. The reproducibility (RSD %) of the method at the 10 ng mL–1 level in the eluate is acceptable – less than 8% for five replicates. Recoveries between 95.4% and 99.9% were obtained for the elements analysed. ZrO2, with a specific surface area of 57 m2 g–1 and a capacity of approximately 5 mg g–1 for the elements studied, was synthesized by hydrolysis of ZrCl4. The preconcentration system was evaluated for several simple synthetic matrices, standard water samples and synthetic seawater. The effect of foreign ions on the efficiency of preconcentration of the elements studied was investigated. The application of a micro-column filled with high-surface-area ZrO2 and flow injection inductively coupled plasma atomic emission spectrometry enables preconcentration and simultaneous determination of 18 elements at low concentrations (ng L–1) in different water samples.  相似文献   

6.
A flow-injection analysis (FIA) system incorporating a micro-column of ZrO2 has been used for the development of an on-line multi-element method for the simultaneous preconcentration and determination of Al, Bi, Cd, Co, Cr, Cu, Fe, Ga, In, Mn, Mo, Ni, Pb, Tl, V, Sb, Sn, and Zn by inductively coupled plasma atomic emission spectrometry (ICP-AES). The conditions for quantitative and reproducible preconcentration, elution, and subsequent on-line ICP-AES determination were established. A sample (pH 8) is pumped through the column at 3 mL min(-1) and sequentially eluted directly into the ICP-AES with 3 mol L(-1) HNO3. With a sample volume of 100 mL and an elution volume of 1 mL signal enhancement 100 times better than for conventional continuous aspirating systems was obtained for the elements studied. The reproducibility (RSD %) of the method at the 10 ng mL(-1) level in the eluate is acceptable - less than 8% for five replicates. Recoveries between 95.4% and 99.9% were obtained for the elements analysed. ZrO2, with a specific surface area of 57 m2 g(-1) and a capacity of approximately 5 mg g(-1) for the elements studied, was synthesized by hydrolysis of ZrCl4. The preconcentration system was evaluated for several simple synthetic matrices, standard water samples and synthetic seawater. The effect of foreign ions on the efficiency of preconcentration of the elements studied was investigated. The application of a micro-column filled with high-surface-area ZrO2 and flow injection inductively coupled plasma atomic emission spectrometry enables preconcentration and simultaneous determination of 18 elements at low concentrations (ng L(-1)) in different water samples.  相似文献   

7.
Muzikar M  Fontàs C  Hidalgo M  Havel J  Salvadó V 《Talanta》2006,70(5):1081-1086
A new matrix separation/preconcentration method is developed for the on-line determination of palladium(II) and platinum(IV) in complex matrices using a sequential ICP-OES instrument. These metals are preconcentrated in a microcolumn packed with Metalfix-Chelamine, a polymeric functionalised resin containing the tetraethylenepentamine group. The hydrodynamic and chemical conditions of the flow system affecting the loading and elution steps are optimised off-line using a mixture of 1.0 mol L−1 thiourea and 2.0 mol L−1 NaClO4 in 4.0 mol L−1 HCl which proved to be the most effective solution for the simultaneous elution of Pd(II) and Pt(IV). High enrichment factors of nearly 35 are achieved for both metals and the detection limits (LOD) are 22 ng L−1 for platinum and 2.5 ng L−1 for palladium. The accuracy of the method was tested by analysing a used pellet catalyst (certified reference material NIST 2556) and trace metal solutions resulting from the leaching of this material. Despite the fact that this CRM contains zirconium and large amounts of aluminium and lead, a high level of agreement was achieved demonstrating the efficiency of the resin in eliminating interfering elements.  相似文献   

8.
This paper reports the development of a new methodology for the determination of cobalt in biological samples by using a flow injection system with loaded DPTH-gel as solid phase to preconcentrate analytes. The procedure is based on the on-line preconcentration of cobalt on a microcolumn of 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel (DPTH-gel). The trapped cobalt is then eluted with 1% tartaric acid and 1% citric acid (7.1 mL) and determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The analytical figures of merit for the determination of cobalt are as follows: detection limit (3S), 8.5 ng mL–1; precision (RSD), 5.8% for 100 ng mL–1 of cobalt; enrichment factor, 13 (using 7.3 mL of sample); sampling frequency, 40 h–1 using a 60-s preconcentration time. For a 120-s preconcentration time (14.6 mL of sample volume) a detection limit of 5.7 ng mL–1, an RSD under 5% at 50 ng mL–1, an enrichment factor of 25, and a sampling frequency of 24 h–1 were reported. The precision and accuracy of the method were checked by analysis of biological certified reference materials.  相似文献   

9.
A new method using a microcolumn packed with nanometer TiO2 as solid-phase extractant has been developed for the simultaneous preconcentration of trace amounts of Cu, Mn, Cr and Ni prior to their measurements by inductively coupled plasma atomic emission spectrometry (ICP-AES). Effects of pH, sample flow rate and volume, elution solution and interfering ions on the recovery of the analytes have been investigated. The adsorption capacity of nanometer TiO2 was found as 0.108, 0.149, 0.039 and 0.034 mmol g−1 for Cu, Cr, Mn and Ni, respectively. The separation of analytes can be achieved from water samples with a concentration factor of 50 times. The method has been applied for the determination of trace elements in biological sample and lake water with satisfactory results.  相似文献   

10.
The system for on-line microcolumn sorption preconcentration and inductively coupled plasma atomic emission spectrometry determination of 14 rare earth elements (REEs) is described. Aminocarboxylic sorbents of different structure are used. Preconcentration of REEs from the 20 ml of sample solution and elution with 210 μl of 1 mol l−1 HCl results in an enrichment factor of 99. The detection limit of REEs is about n × 0.1 μg l−1 (RSD 3–5%). The possibility of simultaneous REE determination in complicated solutions is demonstrated.  相似文献   

11.
The principle of tandem on-line continuous separation techniques as an alternative means of introducing samples into plasmas was applied to the development of a sensitive, selective and convenient method for the determination of arsenic by inductively coupled plasma atomic emission spectrometry (ICP-AES). Arsenic is continuously extracted as AsI3 into xylene from the sample dissolved in 0.1 M potassium iodide solution in 7.2 M hydrochloric acid. The xylene phase (containing the analyte) is continuously mixed on-line with NaBH4 in dimethylformamide and acetic acid solutions. Arsine is thus continuously generated directly from the organic phase and is separated in a gas—liquid separation device which prevents most of the xylene phase vapour from reaching the ICP. The system was optimized for the continuous extraction of AsI3, the direct generation of arsine from xylene and the final ICP determination of arsenic. Finally, the tandem on-line continuous separation ICP detection system was applied to the determination of arsenic in real samples (white metal, cast iron, cupro-nickel and orchard leaves standard materials). Very good agreement between the experimental results and the certified values was obtained.  相似文献   

12.
An FI-ICP-AES method for the determination of trace levels of mercury in biological samples has been described, which is based on the extraction of the mercury complex with 1,5-bis (di-2-pyridyl)methylene thiocarbonohydrazide (DPTH) on-line into isobuthyl-methyl ketone (IBMK). The organic phase (containing the complex) has been mixed on-line with SnCl2 in N,N-dimethylformamide. Thus, mercury vapour can be generated directly from the organic phase and separated in a gas-liquid separation device. The detection limit for mercury is 4 ng/ml and the calibration curve is linear at least from 10 to 2500 ng/ml. The relative standard deviation for 10 replicate measurements is ±1% for 100 ng/ml of Hg(II). Results from the analysis of some certified biological reference materials are given.  相似文献   

13.
Carrilho EN  Nóbrega JA  Gilbert TR 《Talanta》2003,60(6):1131-1140
The brown alga Pilayella littoralis was used as a new biosorbent in an on-line metal preconcentration procedure in a flow-injection system. Al, Co, Cu and Fe were determined in lake water samples by inductively coupled plasma optical emission spectrometry (ICP-OES) after preconcentration in a silica-immobilized alga column. Like other algae, P. littoralis exhibited strong affinity for these metals proving to be an effective accumulation medium. Metals were bound at pH 5.5 and were displaced at pH<2 with diluted HCl. The enrichment factors for CuII, FeIII, AlIII and CoII were 13, 7, 16 and 11, respectively. Metal sorption efficiency ranged from 86 to 90%. The method accuracy was assessed by using drinking water certified reference material and graphite furnace atomic absorption spectrometry (GFAAS) as a comparison technique. The column procedure allowed a less time consuming, easy regeneration of the biomaterial and rigidity of the alga provided by its immobilization on silica gel.  相似文献   

14.
A procedure for the direct analysis of silicon carbide powders (SiC) by simultaneous detection inductively coupled plasma optical emission spectrometry using a Spectro-CIROS™ spectrometer (CCD-ICP-OES) and a novel spark ablation system Spectro-SASSy (SA) as sample introduction technique is described. The sample preparation procedure for SA of non-conducting material is based on mixing the sample powders with a conducting matrix, in this case copper and briquetting pellets. Pressing time, pressure and mixing ratio are shown to be important parameters of the pelleting technique with respect to their mechanical stability for the reliability of the analysis results. A mixing ratio of 0.2 g +0.6 g for SiC and Cu, a pressure of 10 t cm− 2 and a pressing time of 8 min have been found optimum. It has also been shown that the spark parameters selected are crucial for uniform volatilization. Electron probe micrographs of the burning spots and the analytical signal magnitude showed that a rather hard spark at 100 Hz was optimum. The determination of trace elements in silicon carbide powders is demonstrated using a calibration based on the addition of standard solutions. For Al, Ti, V, Mn and Fe detection limits in the lower µg g− 1 range can be achieved. Internal standardization with Y in combination with the addition of standard solutions allows relative standard deviations in the range of 4 to 24% for concentration levels of the order of 3 to 350 µg g− 1.  相似文献   

15.
A new on-line cloud point extraction (CPE) system coupled to ICP-OES was designed for simultaneous extraction, preconcentration and determination of Cd2+, Co2+, Cr3+, Cu2+, Fe3+ and Mn2+ ions in water samples. This is based on the complexation of the metal ions with 1-(2-thenoyl)-3,3,3-trifluoraceton reagent (TTA) at pH 6.0 in the presence of non-ionic surfactant of Triton X-114. The micellar solution was heated above 60 °C and loaded through a column packed with cotton, which acts as a filter for retaining the analyte-entrapped surfactant-rich phase. Then the surfactant-rich phase was eluted using propanol:0.5 mol L−1 nitric acid solution (75:25, v/v) at a flow rate of 3.0 mL min−1 and directly introduced into the nebulizer of the ICP-OES. Several factors influencing the instrumental conditions and extraction were evaluated and optimized. Under the optimum conditions, the enhancement factors of the proposed method for target ions were between 42 and 97, the detection limits (DLs) were in the range of 0.1-2.2 μg L−1. The relative standard deviations (R.S.D.s) at 100 μg L−1 concentration levels of each ion were found to be less than 4.6%. Also, the calibration graphs were linear in the range of 0.5-100 μg L−1 with the correlation coefficients within the range of 0.9948-0.9994.Finally, the developed method was successfully applied to the extraction and determination of the mentioned metal ions in the tap, well, sea and mineral water samples and satisfactory results were obtained.  相似文献   

16.
A method for the determination of Cu, As, Se, Cd, In, Hg, Tl, Pb and Bi in waters and in biological materials by inductively coupled plasma mass spectrometry, after an on-line separation, is described. The matrix separation and analyte preconcentration is accomplished by retention of the analytes complexed with the ammonium salt of O,O-diethyl dithiophosphoric acid in a HNO3 solution on C18 immobilized on silica in a minicolumn. Methanol, as eluent, is introduced in the conventional pneumatic nebulizer of the instrument. In order to use the best compromise conditions, concerning the ligand and acid concentrations, the analytes were determined in two separate groups. The enrichment factors were in the range from 5 to 61, depending on the analyte. The limits of detection varied from 0.43 ng L−1 for Bi to 33 ng L−1 for Cu. The sample consumption is only 2.3 mL for each group and the sampling frequency is 21 h−1. The accuracy was tested by analysing five certified reference materials: water, riverine water, urine, bovine muscle and bovine liver. The agreement between obtained and certified concentrations was very good, except for As. The relatively small volume of methanol, used as eluent, minimizes the problems produced by the introduction of organic solvent into the plasma.  相似文献   

17.
A new adsorbent is synthesized on the basis of silica consecutively modified by polyhexamethylene guanidine and 4,5-dihydroxy-1,3-benzenedisulfonic acid (Tiron) for the group preconcentration of Fe(III), Al(III), Cu(II), Pb(II), Zn(II), and Mn(II) followed by determination by inductively coupled plasma atomic emission spectrometry. The adsorbent in the batch mode quantitatively (recovery 98?99%) extracts Fe(III), Al(III) and Cu(II) ions at pH 4.0 and Fe(III), Al(III), Cu(II), Pb(II), Zn(II), and Mn(II) ions at pH 7.0; the time of attainment of an adsorption equilibrium does not exceed 10 min. Consecutive preconcentration at pH 4.0 and 7.0 in the batch and dynamic modes ensures the quantitative separation of Fe(III), Al(III), and Cu(II) from Pb(II), Zn(II), and Mn(II) and their separate determination. The quantitative desorption of metals was attained with 0.5?1.0 M HNO3 (5 or 10 mL). In preconcentration from 200 mL of solution with 5 mL of a desorbing solution, the preconcentration coefficient was equal to 40. The developed procedure was used for the determination of metal ions in river waters of Krasnoyarsk Krai. The results obtained were verified by the added?found method.  相似文献   

18.
de Lima BB  Conte RA  Nunes CA 《Talanta》2003,59(1):89-93
Inductively coupled plasma optical emission spectrometry (ICP-OES) was applied to the analysis of major and minor elements of Ni-Nb alloys obtained by aluminothermic reduction process. Digestion of samples was made using a mixture of HF+HNO3. Minor and trace elements were determined without matrix separation. The precision for all constituents was <3%. Recoveries for the analyte-spiked samples were 95%.  相似文献   

19.
Fan Z 《Talanta》2006,70(5):1164-1169
Hg(II)-imprinting thiol-functionalized mesoporous sorbent was prepared by a sol–gel method and characterized by X-ray diffraction (XRD), FT-IR spectroscopy and nitrogen gas adsorption–desorption. The static adsorption capacity of the Hg(II)-imprinted and non-imprinted sorbent was 78.5 and 26.6 mg g−1, respectively. The breakthrough capacity was 4.46 mg g−1, and the relative selectivity coefficient for Hg(II) in the presence of Cd and Pb was 3.3 and 3.9, respectively. A new method using a micro-column packed with Hg(II)-imprinting thiol-functionalized mesoporous sorbent has been developed for preconcentration of trace mercury prior to its determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The effects of pH, sample flow rate and volume, elution solution and interfering ions on the recovery of the analyte have been investigated. The limit of detection was 0.39 ng ml−1 with a concentration factor of 150 times. The developed method has been applied to the determination of trace mercury in some biological and environmental samples with satisfactory results. The accuracy was assessed through recovery experiments and analysis of certified reference material.  相似文献   

20.
A flow injection analysis system for on-line preconcentration and simultaneous determination of Bi3+, Cd2+, Co2+, Cu2+, Fe3+, Ni2+, Pb2+ and Zn2+ in aqueous samples by inductively coupled plasma (ICP)-atomic emission spectrometry with a charge coupled detector is described. The preconcentration of analytes is accomplished by retention of their chelates with sodium diethyldithiocarbamate in aqueous solution on a solid phase containing octadecyl silica in a minicolumn. Methanol, as eluent, is introduced into the conventional nebulizer of the ICP instrument. The effects of different parameters, including preconcentration flow rate (equal to sample flow rate (SR)), eluent flow rate (ER), weight of solid phase (W) and eluent loop volume (EV), were optimized by the super-modified simplex method. The optimum conditions were evaluated to be SR 7.2 ml min−1, ER 3.5 ml min−1, W of 100 mg and EV of 0.8 ml. An enrichment factor of 312.5 for each analyte was obtained. The detection limits of the proposed method for Bi3+, Cd2+, Co2+, Cu2+, Fe3+, Ni2+, Pb2+ and Zn2+ were evaluated as 1.3, 1.0, 0.8, 0.3, 14.7, 0.5, 5.5 and 0.1 ng l−1, respectively. The effect of several metal ions on percent recovery was also studied. The method was applied to the recovery of these heavy metals from real matrices and to the simultaneous determination of these cations in different water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号