首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
FT-Raman, FTIR and surface-enhanced Raman spectroscopy (SERS) are applied to the vibrational characterization of the antiviral and antiparkinsonian drug amantadine. SERS spectroscopy is employed for the first time for characterizing the interfacial behavior of this molecule and to study its interaction with colloidal silver. The comparison of SERS spectrum with the Raman spectra of amantadine in solid state and in aqueous solution reveals remarkable changes attributed to the interaction of the drug with the metal through the unprotonated amino group and the formation of a self-assembled amantadine layer on the metal surface. A tentative assignment of the obtained vibrational spectra is carried out on the basis of the vibrational spectra of the structurally related molecules adamantane and tert-buthylamine and the ab initio calculations accomplished for amantadine.  相似文献   

2.
表面增强拉曼光谱(surfaced-enhanced Raman spectroscopy, SERS)作为一种借助贵金属纳米材料可以增强目标分子信号的拉曼光谱技术,由于其具有指纹识别、高灵敏、高准确度、快速无损、不受水分子干扰等特点,在法庭科学领域中的痕量毒品检测方面逐渐受到人们的关注.SERS不仅用于毒品纯品的检测...  相似文献   

3.
Electric field-induced assembly of biological and synthetic particles has proven useful in two- and three-dimensional fabrication of composite materials, microwires, photonic crystals, artificial tissues, and more. Biological particles are typically irregularly shaped, and using non-spherical synthetic particles has the ability to expand current applications. However, there is much to be understood about the dielectrophoretic (DEP) interaction that takes place between particles of general shape. In this work, we numerically study the DEP interaction between two prolate spheroid particles suspended in an unbounded fluid. The boundary-element method (BEM) is applied to solve the coupled electric field, Stokes flow, and particle motion, and the DEP forces are obtained by integrating the Maxwell stress tensor over the particle surfaces. Effects of the initial configuration and aspect ratio are investigated. Results show that the particles go through a self-rotation process, that is, electro-orientation, while translating slowly to form a chain pair. The final formation resembles the chaining pattern observed previously in experiments using densely distributed ellipsoidal particles. Thus, the transient behavior and particle-particle interaction exhibited in the current study could be used as the fundamental mechanism to explain the phenomenon in the experiment.  相似文献   

4.
Surface-enhanced Raman spectroscopy, resonance Raman spectroscopy and molecular modeling were employed to study the interaction of hypericin (Hyp) with human (HSA), rat (RSA) and bovine (BSA) serum albumins. The identification of the binding site of Hyp in serum albumins as well as the structural model for Hyp/HSA complex are presented. The interactions mainly reflect: (1) a change of the strength of H bonding at the N1-H site of Trp; (2) a change of the Trp side-chain conformation; (3) a change of the hydrophobicity of the Trp environment; and (4) a formation of an H-bond between the carbonyl group of Hyp and a proton donor in HSA and RSA which leads to a protonated-like carbonyl in Hyp. Our results indicate that Hyp is rigidly bound in IIA subdomain of HSA close to Trp214 (distance 5.12 A between the centers of masses). In the model presented the carbonyl group of Hyp is hydrogen bonded to Asn458. Two other candidates for hydrogen bonds have been identified between the bay-region hydroxyl group of Hyp and the carbonyl group of the Trp214 peptidic link and between the peri-region hydroxyl group of Hyp and the Asn458 carbonyl group. It is shown that the structures of the Hyp/HSA and Hyp/RSA complexes are similar to, and in some aspects different from, those found for the Hyp/BSA complex. The role of aminoacid sequence in the IIA subdomains of HSA, RSA and BSA is discussed to explain the observed differences.  相似文献   

5.
Malondialdehyde (MDA) is a biomarker of lipid peroxidation that has been widely associated with food rancidity as well as many human diseases. Most current MDA detection methods involve MDA reaction with thiobarbituric acid (TBA), followed by UV-visible and/or fluorescence detection of high-performance liquid chromatography (HPLC)-separated TBA-MDA. Herein, we report the first proof-of-concept study of surface-enhanced Raman detection of a TBA-MDA adduct using silver nanoparticles as the SERS substrate and the 632.8 nm HeNe laser as a Raman excitation source. Current SERS detection limit of TBA-MDA is 0.45 nM, ~100 times higher than the 36 nM fluorescence sensitivity recently reported with the HPLC-purified TBA-MDA. Molecular specificity of the SERS technique was studied by comparing the SERS spectrum of TBA-MDA with those acquired with TBA adducts of other TBA-reactive compounds (TBARCs) that includes formaldehyde, acetaldehyde, butyraldehyde, trans-2-hexenal, and pyrimidine. Compared to TBA and TBA adducts with those TBARCs, the SERS activity of TBA-MDA adduct is significantly higher. The possibility of direct SERS detection of TBA-MDA in a reaction mixture (without HPLC separation) has also been investigated.  相似文献   

6.
Electrochemical surface-enhanced Raman spectroscopy of nanostructures   总被引:1,自引:0,他引:1  
Wu DY  Li JF  Ren B  Tian ZQ 《Chemical Society reviews》2008,37(5):1025-1041
This tutorial review first describes the early history of SERS as the first SERS spectra were obtained from an electrochemical cell, which led to the discovery of the SERS effect in mid-1970s. Up to date, over 500 papers have been published on various aspects of SERS from electrochemical systems. We then highlight important features of electrochemical SERS (EC-SERS). There are two distinctively different properties of electric fields, the electromagnetic field and static electrochemical field, co-existing in electrochemical systems with various nanostructures. Both chemical and physical enhancements can be influenced to some extent by applying an electrode potential, which makes EC-SERS one of the most complicated systems in SERS. Great efforts have been made to comprehensively understand SERS and analyze EC-SERS spectra on the basis of the chemical and physical enhancement mechanisms in order to provide meaningful information for revealing the mechanisms of electrochemical adsorption and reaction. The EC-SERS experiments and applications are then discussed from preparation of nanostructured electrodes to investigation of SERS mechanisms and from characterization of adsorption configuration to elucidation of electrochemical reaction mechanisms. Finally, prospective developments of EC-SERS in substrates, methods and theory are discussed.  相似文献   

7.
The detection and identification of dilute bacterial samples by surface-enhanced Raman spectroscopy has been explored by mixing aqueous suspensions of bacteria with a suspension of nanocolloidal silver particles. An estimate of the detection limit of E. coli was obtained by varying the concentration of bacteria. By correcting the Raman spectra for the broad librational OH band of water, reproducible spectra were obtained for E. coli concentrations as low as approximately 103 cfu/mL. To aid in the assignment of Raman bands, spectra for E. coli in D2O are also reported. Figure Light scattering apparatus used to detect bacteria  相似文献   

8.
Instrumentation has been developed to detect and characterize airborne pollen and bacteria rapidly by injecting a bioaerosol into a nanocolloidal suspension of silver particles using a micropump. The biological particles were mixed with the silver colloid in order to deposit the metallic particles on the surface of the bioanalyte. The silver/bioanalyte suspension was pumped through a light scattering cuvette, and the enhanced Raman spectrum was recorded. Surface-enhanced Raman spectra are presented for tree pollen (cottonwood and redwood pollen) and a bacterium (Escherichia coli), and the E. coli spectra are compared with results obtained from the literature and with results obtained previously by mixing various concentrations of the bioanalyte with the silver colloid. Although the system has not been optimized to maximize the Raman spectra, it is shown spectra can be obtained rapidly. Some assignments of the chemical bonds associated with the spectra are based on previously published results for bacteria and pollen.  相似文献   

9.
Surface-enhanced Raman scattering (SERS) spectroscopy is applied to the study of the adsorption of the insecticide cyromazine on Ag colloid. The influence of pH and the aggregation inductors, sodium chloride, potassium nitrate and sodium hydroxide on the adsorption mechanism was investigated. Two different adsorption mechanisms are deduced depending on the experimental conditions: via the N atom bounded to the cyclopropyl (cP) group or through an ionic pairing of protonated amino groups with the chloride adsorbed on the metal. An important contribution of the chemical mechanism was inferred when the interaction with the metal occurs through the N lone pair.  相似文献   

10.
Surface-enhanced Raman scattering (SERS) was discovered three decades ago and has gone through a tortuous pathway to develop into a powerful diagnostic technique. Recently, the lack of substrate, surface and molecular generalities of SERS has been circumvented to a large extent by devising and utilizing various nanostructures by many groups including ours. This article aims to present our recent approaches of utilizing the borrowing SERS activity strategy mainly through constructing two types of nanostructures. The first nanostructure is chemically synthesized Au nanoparticles coated with ultra-thin shells (ca. one to ten atomic layers) of various transition metals, e.g., Pt, Pd, Ni and Co, respectively. Boosted by the long-range effect of the enhanced electromagnetic (EM) field generated by the highly SERS-active Au core, the originally low surface enhancement of the transition metal can be substantially improved giving total enhancement factors up to 10(4)-10(5). It allows us to obtain the Raman spectra of surface water, having small Raman cross-section, on several transition metals for the first time. To expand the surface generality of SERS, tip-enhanced Raman spectroscopy (TERS) has been employed. With TERS, a nanogap can be formed controllably between an atomically flat metal surface and the tip with an optimized shape, within which the enhanced EM field from the tip can be coupled (borrowed) effectively. Therefore, one can obtain surface Raman signals (TERS signals) from adsorbed species at Au(110), Au(111) and, more importantly, Pt(l10) surfaces. The enhancement factor achieved on these single crystal surfaces can be up to 106, especially with a very high spatial resolution down to about 14 nm. To fully accomplish the borrowing strategy from different nanostructures and to explain the experimental observations, a three-dimensional finite-difference time-domain method was used to calculate and evaluate the local EM field on the core-shell nanoparticle surfaces and the TERS tips. Finally, prospects and further developments of this valuable strategy are briefly discussed with emphasis on the emerging experimental methodologies.  相似文献   

11.
《Mendeleev Communications》2019,29(4):395-397
  1. Download : Download high-res image (369KB)
  2. Download : Download full-size image
  相似文献   

12.
Coherent control of chemical species in complex systems is always subject to intrinsic inhomogeneities from the environment. For example, slight chemical modifications can decisively affect transport properties of molecules on surfaces. Hence, single-molecule (SM) studies are the best solution to avoid these problems and to study diverse phenomena in biology, physics, and chemistry. Along these lines, monitoring SM redox processes has always been a "holy grail" in electrochemistry. To date, claims of SM electrochemistry by spectroscopy have come only from fluorescence quenching of polymers and redox-fluorescent molecules. In unconnected developments, the potential of the bianalyte surface-enhanced Raman scattering (SERS) method as a technique with SM sensitivity has been demonstrated. Raman spectroscopy has the potential to explore SM detection of any molecule, independent of its chemical nature. We provide definitive proof of SM events following redox cycles using SERS. The superior sensitivity and spectral richness of SERS makes it general enough to study, in principle, SM electron transfer of any (label-free) molecule.  相似文献   

13.
The black inkjet and laser prints were analysed with regard to application in forensic analysis of questioned documents. The purpose of this work was to study spectral properties and compare the suitability of surface-enhanced Raman scattering (SERS) with Fourier transform Raman spectra of prints. This work aimed to find optimal surface-enhanced Raman spectroscopic approach for the future analysis of documents using statistical methods. In this work, we analysed eight prints of four laser and four inkjet devices. The samples were measured using two dispersive Raman devices; (DXR Raman microscope with excitation line 532 nm, Foram 685-2 spectrometer − 685 nm) and FT-Raman device (Bruker Spectrometer MultiRAM with excitation line 1064 nm). The silver nanoparticles (AgNPs) colloid for SERS experiment were synthesised and checked by UV–vis spectroscopy and scanning electron microscopy (SEM). The remarkable differences caused by centrifugation of silver colloid were observed just in the SEM images. The main contribution of this paper is to propose the novel approach achieving sufficient SERS signal intensity of black prints using the both, laser and inkjet printers. Moreover, this method is based on just a single metal colloid, and the analysis can be performed in-situ, i.e. directly on the printed sample surface. We consider the SERS could by highly promising and universal for applications in the forensic analysis of printed documents with the combination of statistical method when conventional methods are not effective.  相似文献   

14.
As surface-enhanced Raman spectroscopy becomes more widely used as a technique for routine analysis, attention must be given to factors which affect the reproducibility of the technique. One such factor which has not been considered is the effect of the spatial distribution of molecules in an analyte spot on a solid SERS substrate. In this study, we demonstrate that the spatial distribution of analyte can be quite non-uniform due to chromatographic interactions between the analyte molecules, solvent and support used. The SERS signal obtained is highly dependent on the position of the laser beam in the analyte spot. The SERS signal is also dependent on the relative sizes of the analyte spot and the laser beam at the sample. This latter dependence can not be explained with current theoretical treatments. However, we demonstrate that a simple modification of the current theory can qualitatively explain the results we observe.  相似文献   

15.
Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy)   总被引:2,自引:1,他引:2  
Surface-enhanced Raman scattering (SERS) is a powerful technique for analyzing biological samples as it can rapidly and nondestructively provide chemical and, in some cases, structural information about molecules in aqueous environments. In the Raman scattering process, both visible and near-infrared (NIR) wavelengths of light can be used to induce polarization of Raman-active molecules, leading to inelastic light scattering that yields specific molecular vibrational information. The development of surface enhancement has enabled Raman scattering to be an effective tool for qualitative as well as quantitative measurements with high sensitivity and specificity. Recent advances have led to many novel applications of SERS for biological analyses, resulting in new insights for biochemistry and molecular biology, the detection of biological warfare agents, and medical diagnostics for cancer, diabetes, and other diseases. This trend article highlights many of these recent investigations and provides a brief outlook in order to assess possible future directions of SERS as a bioanalytical tool.  相似文献   

16.
食品污染是危害公众健康和安全的重要问题,探究灵敏、快速、简单的技术,以便在痕量水平上检测污染物,对保障食品质量安全和风险评价具有十分重要的意义.表面增强拉曼光谱(SERS)是利用光与金、银等纳米结构材料相互作用产生很强的表面等离子激元共振效应,可显著增强吸附在纳米结构表面上分子的拉曼信号,以超灵敏获取样品自身或拉曼探针...  相似文献   

17.
We report a simple method for preparing three different SERS-active substrates. Concentrated hydrazine solution as the reducing agent and tellurium dioxide as the precursor were used to prepare Te nanowires (NWs). The as-prepared Te NWs have an average length of 547.7 +/- 111.6 nm and an average width of 15.1 +/- 2.7 nm. Through the reaction of Te NWs with sodium tetrachloroaurate in the presence of hexadecyltrimethylammonium bromide (CTAB) over reaction times of 10, 20, and 60 min, gold-tellurium nanodumbbells, gold-tellurium nanopeapods, and gold pearl-necklace nanomaterials (Au PNNs) were obtained, respectively. By controlling the reaction time, the distance between adjacent gold nanoparticles (Au NPs) in each Te nanowire was tunable, allowing us to investigate its effect on the SERS signals. Having shorter distances among Au NPs (greater electromagnetic fields), the Au PNNs provided a reproducible enhancement factor of 5.6 x 10(9).  相似文献   

18.
Large (10 × 10 cm) sheets of surface-enhanced Raman spectroscopy (SERS) active polymer have been prepared by stabilising metal nanoparticle aggregates within dry hydroxyethylcellulose (HEC) films. In these films the aggregates are protected by the polymer matrix during storage but in use they are released when aqueous analyte droplets cause the films to swell to their gel form. The fact that these “Poly-SERS” films can be prepared in bulk but then cut to size and stored in air before use means that they provide a cost effective and convenient method for routine SERS analysis. Here we have tested both Ag and Au Poly-SERS films for use in point-of-care monitoring of therapeutic drugs, using phenytoin as the test compound. Phenytoin in water could readily be detected using Ag Poly-SERS films but dissolving the compound in phosphate buffered saline (PBS) to mimic body fluid samples caused loss of the drug signal due to competition for metal surface sites from Cl ions in the buffer solution. However, with Au Poly-SERS films there was no detectable interference from Cl and these materials allowed phenytoin to be detected at 1.8 mg L−1, even in PBS. The target range of detection of phenytoin in therapeutic drug monitoring is 10–20 mg L−1. With the Au Poly-SERS films, the absolute signal generated by a given concentration of phenytoin was lower for the films than for the parent colloid but the SERS signals were still high enough to be used for therapeutic monitoring, so the cost in sensitivity for moving from simple aqueous colloids to films is not so large that it outweighs the advantages which the films bring for practical applications, in particular their ease of use and long shelf life.  相似文献   

19.
Pre-resonance Raman spectra have been obtained for TCNQ and LiTCNQ in acetonitrile solution using an Ar+—Kr+ laser and a tunable rhodamine 6G dye laser. Using the theory of Albrecht and Hutley, we have calculated frequency factors for the intensity variations for several symmetric vibrational modes of each molecule. The observed spectra for TCNQ and LiTCNQ with violet, blue, and green excitation give evidence for B-type resonance enhancement due to vibronic mixing between at least two violet and ultraviolet transitions. The Raman spectra for LiTCNQ with yellow, orange, and red excitation show A-type enhancement due to a single electronic excitation in the near infrared.  相似文献   

20.
《Vibrational Spectroscopy》2009,49(2):210-214
Raman spectra of para-nitro-aniline (pNA), a molecule with high applicability potential in molecular electronics, were recorded in solid state and in ethanol solution. Complete assignment of the experimental spectra was made by using the B3LYP/6-31G(d) theoretical results. The calculated molecular electrostatic potential shows a high negative charge localized on the nitro group of pNA and the surface-enhanced Raman scattering (SERS) spectrum of pNA adsorbed to colloidal silver particles denote the molecule interaction with the silver surface mainly through the nitro group. However, theoretical results obtained by modeling the pNA–4Ag complex also suggest the adsorption of pNA through the amino group or a flattened orientation of pNA with respect to the silver surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号