首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matching forests generalize branchings in a directed graph and matchings in an undirected graph. We present an efficient algorithm, the PMF Algorithm, for the problem: given a mixed graphG and a real weight on each of its edges, find a perfect matching forest of maximum weight-sum. The PMF Algorithm proves the sufficiency of a linear system which definesP = (G) andP(G), the convex hull of incidence vectors of perfect matching forests and matching forests respectively ofG. The algorithm also provides a generalization of Tutte's theorem on the existence of perfect matchings in an undirected graph.Research partially supported by a N.R.C. of Canada Postdoctorate Fellowship.  相似文献   

2.
The Perfectly Matchable Subgraph Polytope of a graphG=(V, E), denoted byPMS(G), is the convex hull of the incidence vectors of thoseXV which induce a subgraph having a perfect matching. We describe a linear system whose solution set isPMS(G), for a general (nonbipartite) graphG. We show how it can be derived via a projection technique from Edmonds' characterization of the matching polytope ofG. We also show that this system can be deduced from the earlier bipartite case [2], by using the Edmonds-Gallai structure theorem. Finally, we characterize which inequalities are facet inducing forPMS(G), and hence essential.  相似文献   

3.
A minimal blocker in a bipartite graph G is a minimal set of edges the removal of which leaves no perfect matching in G. We give an explicit characterization of the minimal blockers of a bipartite graph G. This result allows us to obtain a polynomial delay algorithm for finding all minimal blockers of a given bipartite graph. Equivalently, we obtain a polynomial delay algorithm for listing the anti‐vertices of the perfect matching polytope of G. We also provide generation algorithms for other related problems, including d‐factors in bipartite graphs, and perfect 2‐matchings in general graphs. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 209–232, 2006  相似文献   

4.
König–Egerváry graphs are those whose maximum matchings are equicardinal to their minimum-order coverings by vertices. Edmonds (J Res Nat Bur Standards Sect B 69B:125–130, 1965) characterized the perfect matching polytope of a graph G = (V, E) as the set of nonnegative vectors ${{\bf{x}}\in\mathbb R^E}K?nig–Egerváry graphs are those whose maximum matchings are equicardinal to their minimum-order coverings by vertices. Edmonds (J Res Nat Bur Standards Sect B 69B:125–130, 1965) characterized the perfect matching polytope of a graph G = (V, E) as the set of nonnegative vectors x ? \mathbb RE{{\bf{x}}\in\mathbb R^E} satisfying two families of constraints: ‘vertex saturation’ and ‘blossom’. Graphs for which the latter constraints are implied by the former are termed non-Edmonds. This note presents two proofs—one combinatorial, one algorithmic—of its title’s assertion. Neither proof relies on the characterization of non-Edmonds graphs due to de Carvalho et al. (J Combin Theory Ser B 92:319–324, 2004).  相似文献   

5.
A signed graph is a graph whose edges are labelled positive or negative. A signed graph is said to be balanced if the set of negative edges form a cut. The balanced induced subgraph polytopeP(G) of a graphG is the convex hull of the incidence vectors of all node sets that induce balanced subgraphs ofG. In this paper we exhibit various (rank) facet defining inequalities. We describe several methods with which new facet defining inequalities ofP(G) can be constructed from known ones. Finding a maximum weighted balanced induced subgraph of a series parallel graph is a polynomial problem. We show that for this class of graphsP(G) may have complicated facet defining inequalities. We derive analogous results for the polytope of acyclic induced subgraphs.Research supported in part by the Natural Sciences and Engineering Research Council of Canada; the second author has also been supported by C.P. Rail.  相似文献   

6.
A graph with at least two vertices is matching covered if it is connected and each edge lies in some perfect matching. A matching covered graph G is extremal if the number of perfect matchings of G is equal to the dimension of the lattice spanned by the set of incidence vectors of perfect matchings of G. We first establish several basic properties of extremal matching covered graphs. In particular, we show that every extremal brick may be obtained by splicing graphs whose underlying simple graphs are odd wheels. Then, using the main theorem proved in 2 and 3 , we find all the extremal cubic matching covered graphs. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 19–50, 2005  相似文献   

7.
The maximum matching graph M(G) of a graph G is a simple graph whose vertices are the maximum matchings of G and where two maximum matchings are adjacent in M(G) if they differ by exactly one edge. In this paper, we prove that if a graph is isomorphic to its maximum matching graph, then every block of the graph is an odd cycle.  相似文献   

8.
We characterize graphs H with the following property: Let G be a graph and F be a subgraph of G such that (i) each component of F is isomorphic to H or K2, (ii) the order of F is maximum, and (iii) the number of H-components in F is minimum subject to (ii). Then a maximum matching of F is also a maximum matching of G. This result is motivated by an analogous property of fractional matchings discovered independently by J. P. Uhry and E. Balas.  相似文献   

9.
The cut polytopeP C (G) of a graphG=(V, E) is the convex hull of the incidence vectors of all edge sets of cuts ofG. We show some classes of facet-defining inequalities ofP C (G). We describe three methods with which new facet-defining inequalities ofP C (G) can be constructed from known ones. In particular, we show that inequalities associated with chordless cycles define facets of this polytope; moreover, for these inequalities a polynomial algorithm to solve the separation problem is presented. We characterize the facet defining inequalities ofP C (G) ifG is not contractible toK 5. We give a simple characterization of adjacency inP C (G) and prove that for complete graphs this polytope has diameter one and thatP C (G) has the Hirsch property. A relationship betweenP C (G) and the convex hull of incidence vectors of balancing edge sets of a signed graph is studied.  相似文献   

10.
Acta Mathematicae Applicatae Sinica, English Series - The perfect matching polytope of a graph G is the convex hull of the incidence vectors of all perfect matchings of G. A graph G is PM-compact...  相似文献   

11.
Matching graphs     
The matching graph M(G) of a graph G is that graph whose vertices are the maximum matchings in G and where two vertices M1 and M2 of M(G) are adjacent if and only if |M1M2| = 1. When M(G) is connected, this graph models a metric space whose metric is defined on the set of maximum matchings in G. Which graphs are matching graphs of some graph is not known in general. We determine several forbidden induced subgraphs of matching graphs and add even cycles to the list of known matching graphs. In another direction, we study the behavior of sequences of iterated matching graphs. © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 73–86, 1998  相似文献   

12.
P. Hall, [2], gave necessary and sufficient conditions for a bipartite graph to have a perfect matching. Koning, [3], proved that such a graph can be decomposed intok edge-disjoint perfect matchings if and only if it isk-regular. It immediately follows that in ak-regular bipartite graphG, the deletion of any setS of at mostk – 1 edges leaves intact one of those perfect matchings. However, it is not known what happens if we delete more thank – 1 edges. In this paper we give sufficient conditions so that by deleting a setS ofk + r edgesr 0, stillG – S has a perfect matching. Furthermore we prove that our result, in some sense, is best possible.  相似文献   

13.
LetG be a graph,VP(G) its vertex packing polytope and letA(G) be obtained by reflectingVP(G) in all Cartersian coordinates. Denoting byA*(G) the set obtained similarly from the fractional vertex packing polytope, we prove that the segment connecting any two non-antipodal vertices ofA(G) is contained in the surface ofA(G) and thatG is perfect if and only ifA*(G) has a similar property.  相似文献   

14.
15.
A matching M is called uniquely restricted in a graph G if it is the unique perfect matching of the subgraph induced by the vertices that M saturates. G is a unicycle graph if it owns only one cycle. Golumbic, Hirst and Lewenstein observed that for a tree or a graph with only odd cycles the size of a maximum uniquely restricted matching is equal to the matching number of the graph. In this paper we characterize unicycle graphs enjoying this equality. Moreover, we describe unicycle graphs with only uniquely restricted maximum matchings. Using these findings, we show that unicycle graphs having only uniquely restricted maximum matchings can be recognized in polynomial time.  相似文献   

16.
It is shown that a graphG has all matchings of equal size if and only if for every matching setλ inG, G\V(λ) does not contain a maximal open path of odd length greater than one, which is not contained in a cycle. (V(λ) denotes the set of vertices incident with some edge ofλ.) Subsequently edge-coverings of graphs are discussed. A characterization is supplied for graphs all whose minimal covers have equal size.  相似文献   

17.
Hong Bian 《Discrete Mathematics》2009,309(16):5017-5023
For graph G, its perfect matching polytope Poly(G) is the convex hull of incidence vectors of perfect matchings of G. The graph corresponding to the skeleton of Poly(G) is called the perfect matching graph of G, and denoted by PM(G). It is known that PM(G) is either a hypercube or hamilton connected [D.J. Naddef, W.R. Pulleyblank, Hamiltonicity and combinatorial polyhedra, J. Combin. Theory Ser. B 31 (1981) 297-312; D.J. Naddef, W.R. Pulleyblank, Hamiltonicity in (0-1)-polytope, J. Combin. Theory Ser. B 37 (1984) 41-52]. In this paper, we give a sharp upper bound of the number of lines for the graphs G whose PM(G) is bipartite in terms of sizes of elementary components of G and the order of G, respectively. Moreover, the corresponding extremal graphs are constructed.  相似文献   

18.
Given a graph G and a family H of hypomatchable subgraphs of G, we introduce the notion of a hypomatching of G relative to H as a collection of node disjoint edges and subgraphs, where the subgraphs all belong to H. Examples include matchings (H = Ø), fractional matchings (H contains all the hypomatchable subgraphs of G), and edge-and-triangle packings (H is the set of 3-cliques of G). We show that many of the classical theorems about maximum cardinality matchings can be extended to hypomatchings which cover the maximum number of nodes in a graph.  相似文献   

19.
Given a finite setX and a family of feasible subsetsF ofX, the 0–1 polytope P (F is defined as the convex hull of all the characteristic vectors of members ofF We show that under a certain assumption a special type of face ofP(F) is equivalent to the ideal polytope of some pseudo-ordered set. Examples of families satisfying the assumption are those related to the maximum stable set problem, set packing and set partitioning problems, and vertex coloring problem. Using this fact, we propose a new heuristic for such problems and give results of our preliminary computational experiments for the maximum stable set problem.Supported by a JSPS Fellowship for Young Scientists.Supported by Grant-in-Aids for Co-operative Research (06740147) of the Ministry of Education, Science and Culture.  相似文献   

20.
A graph G is said to be equimatchable if every matching in G extends to (i.e., is a subset of) a maximum matching in G. In an earlier paper with Saito, the authors showed that there are only a finite number of 3-connected equimatchable planar graphs. In the present paper, this result is extended by showing that in a surface of any fixed genus (orientable or non-orientable), there are only a finite number of 3-connected equimatchable graphs having a minimal embedding of representativity at least three. (In fact, if the graphs considered are non-bipartite, the representativity three hypothesis may be dropped.) The proof makes use of the Gallai-Edmonds decomposition theorem for matchings.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号