首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents a fuzzy model-based adaptive approach for synchronization of chaotic systems which consist of the drive and response systems. Takagi–Sugeno (T–S) fuzzy model is employed to represent the chaotic drive and response systems. Since the parameters of the drive system are assumed unknown, we design the response system that estimates the parameters of the drive system by adaptive strategy. The adaptive law is derived to estimate the unknown parameters and its stability is guaranteed by Lyapunov stability theory. In addition, the controller in the response system contains two parts: one part that can stabilize the synchronization error dynamics and the other part that estimates the unknown parameters. Numerical examples, including Duffing oscillator and Lorenz attractor, are given to demonstrate the validity of the proposed adaptive synchronization approach.  相似文献   

2.
A robust adaptive sliding control scheme is developed in this study to achieve synchronization for two identical chaotic systems in the presence of uncertain system parameters, external disturbances and nonlinear control inputs. An adaptation algorithm is given based on the Lyapunov stability theory. Using this adaptation technique to estimate the upper-bounds of parameter variation and external disturbance uncertainties, an adaptive sliding mode controller is then constructed without requiring the bounds of parameter and disturbance uncertainties to be known in advance. It is proven that the proposed adaptive sliding mode controller can maintain the existence of sliding mode in finite time in uncertain chaotic systems. Finally, numerical simulations are presented to show the effectiveness of the proposed control scheme.  相似文献   

3.
In this article, cluster synchronization problem for Lur'e type Takagi–Sugeno (T–S) fuzzy complex networks with probabilistic time‐varying delays is considered. Pinning control strategy is proposed. The probability distribution of the time‐varying delay is considered. In terms of the probability distribution of the delays, a new type of system model with probability‐distribution‐dependent parameter matrices is proposed. Moreover, probabilistic delay is assumed to satisfy certain probability distribution and the probability of the delay takes values in some intervals. By constructing a suitable Lyapunov–Krasovskii functional involving triple integral terms and using Kronecker product with convex combination technique, some sufficient conditions are derived to ensure the cluster synchronization of designed networks such that the linear feedback controller can be used to every cluster. The problem of controller design is converted into solving a series of linear matrix inequalities. The effectiveness of our results is verified through numerical examples and simulations. © 2014 Wiley Periodicals, Inc. Complexity 21: 59–77, 2015  相似文献   

4.
We consider the coupling of two uncertain dynamical systems with different orders using an adaptive feedback linearization controller to achieve reduced-order synchronization between the two systems. Reduced-order synchronization is the problem of synchronization of a slave system with projection of a master system. The synchronization scheme is an exponential linearizing-like controller and a state/uncertainty estimator. As an illustrative example, we show that the dynamical evolution of a second-order driven oscillator can be synchronized with the canonical projection of a fourth-order chaotic system. Simulation results indicated that the proposed control scheme can significantly improve the synchronousness performance. These promising results justify the usefulness of the proposed output feedback controller in the application of secure communication.  相似文献   

5.
The present article aims to study the projective synchronization between two identical and non?identical time?delayed chaotic systems with fully unknown parameters. Here the asymptotical and global synchronization are achieved by means of adaptive control approach based on Lyapunov–Krasovskii functional theory. The proposed technique is successfully applied to investigate the projective synchronization for the pairs of time?delayed chaotic systems amongst advanced Lorenz system as drive system with multiple delay Rössler system and time?delayed Chua's oscillator as response system. An adaptive controller and parameter update laws for unknown parameters are designed so that the drive system is controlled to be the response system. Numerical simulation results, depicted graphically, are carried out using Runge–Kutta Method for delay?differential equations, showing that the design of controller and the adaptive parameter laws are very effective and reliable and can be applied for synchronization of time?delayed chaotic systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, the problem of synchronizing two chaotic gyros in the presence of uncertainties, external disturbances and dead-zone nonlinearity in the control input is studied while the structure of the gyros, parameters of the dead-zone and the bounds of uncertainties and external disturbances are unknown. The dead-zone nonlinearity in the control input might cause the perturbed chaotic system to show unpredictable behavior. This is due to the high sensitivity of these systems to small changes in their parameters. Thereby, the effect of these issues should not be ignored in the control design for these systems. In order to eliminate the effects from the dead-zone nonlinearity, in this paper, a robust adaptive fuzzy sliding mode control scheme is proposed to overcome the synchronization problem for a class of unknown nonlinear chaotic gyros. The main contribution of our paper in comparison with other works that attempt to solve the problem of dead-zone in the synchronization of chaotic gyros is that we assume that the structure of the system, uncertainties, external disturbances, and dead-zone are fully unknown. Simulation results are provided to illustrate the effectiveness of the proposed method.  相似文献   

7.
In this paper, the exponential generalized synchronization for a class of coupled systems with uncertainties is defined. A novel and powerful method is proposed to investigate the generalized synchronization based on the adaptive control technique. According to the Lyapunov stability theory, rigorous proof is given for the exponential stability of error system. In comparison with previous schemes, the presented method shortens the synchronization time and is more applicable in practice. Besides, it is shown that the synchronization effect is robust against the uncertain factors. Some typical chaotic and hyper-chaotic systems are taken as examples to illustrate above approach. The corresponding numerical simulations are demonstrated to verify the effectiveness of proposed method.  相似文献   

8.
This paper proposes a robust adaptive neural-fuzzy-network control (RANFC) to address the problem of controlled synchronization of a class of uncertain chaotic systems. The proposed RANFC system is comprised of a four-layer neural-fuzzy-network (NFN) identifier and a supervisory controller. The NFN identifier is the principal controller utilized for online estimation of the compound uncertainties. The supervisory controller is used to attenuate the effects of the approximation error so that the perfect tracking and synchronization of chaotic systems are achieved. All the parameter learning algorithms are derived based on Lyapunov stability theorem to ensure network convergence as well as stable synchronization performance. Finally, simulation results are provided to verify the effectiveness and robustness of the proposed RANFC methodology.  相似文献   

9.
In this paper, we apply the simple adaptive-feedback control scheme to synchronize a class of chaotic non-autonomous systems. Based on the invariance principle of differential equations, some generic sufficient conditions for global asymptotic synchronization are obtained. Unlike the usual linear feedback, the variable feedback strength is automatically adapted to completely synchronize two identical systems and simple to implement in practice. As illustrative examples, synchronization of two parametrically excited chaotic pendulums and that of two 4D new systems are considered here. Numerical simulations show the proposed method is effective and robust against the effect of noise.  相似文献   

10.
Contraction theory based stability analysis exploits the incremental behavior of trajectories of a system with respect to each other. Application of contraction theory provides an alternative way for stability analysis of nonlinear systems. This paper considers the design of a control law for synchronization of certain class of chaotic systems based on backstepping technique. The controller is selected so as to make the error dynamics between the two systems contracting. Synchronization problem with and without uncertainty in system parameters is discussed and necessary stability proofs are worked out using contraction theory. Suitable adaptation laws for unknown parameters are proposed based on the contraction principle. The numerical simulations verify the synchronization of the chaotic systems. Also parameter estimates converge to their true values with the proposed adaptation laws.  相似文献   

11.
This work presents chaos synchronization between two different chaotic systems by using active control. This technique is applied to achieve chaos synchronization for each pair of the dynamical systems Lorenz, Lü and Chen. Numerical simulations are shown to verify the results.  相似文献   

12.
This paper deals with chaos synchronization between two different uncertain fractional order chaotic systems based on adaptive fuzzy sliding mode control (AFSMC). With the definition of fractional derivatives and integrals, a fuzzy Lyapunov synthesis approach is proposed to tune free parameters of the adaptive fuzzy controller on line by output feedback control law and adaptive law. Moreover, chattering phenomena in the control efforts can be reduced. The sliding mode design procedure not only guarantees the stability and robustness of the proposed AFSMC, but also the external disturbance on the synchronization error can be attenuated. The simulation example is included to confirm validity and synchronization performance of the advocated design methodology.  相似文献   

13.
This paper proposes an observer based self-structuring robust adaptive fuzzy wave-net (FWN) controller for a class of nonlinear uncertain multi-input multi-output systems. The control signal is comprised of two parts. The first part arises from an adaptive fuzzy wave-net based controller that approximates the system structural uncertainties. The second part comes from a robust H based controller that is used to attenuate the effect of function approximation error and disturbance. Moreover, a new self structuring algorithm is proposed to determine the location of basis functions. Simulation results are provided for a two DOF robot to show the effectiveness of the proposed method.  相似文献   

14.
This paper investigates the system stability of a sampled-data fuzzy-model-based control system, formed by a nonlinear plant and a sampled-data fuzzy controller connected in a closed loop. The sampled-data fuzzy controller has an advantage that it can be implemented using a microcontroller or a digital computer to lower the implementation cost and time. However, discontinuity introduced by the sampling activity complicates the system dynamics and makes the stability analysis difficult compared with the pure continuous-time fuzzy control systems. Moreover, the favourable property of the continuous-time fuzzy control systems which is able to relax the stability analysis result vanishes in the sampled-data fuzzy control systems. A Lyapunov-based approach is employed to derive the LMI-based stability conditions to guarantee the system stability. To facilitate the stability analysis, a switching fuzzy model consisting of some local fuzzy models is employed to represent the nonlinear plant to be controlled. The comparatively less strong nonlinearity of each local fuzzy model eases the satisfaction of the stability conditions. Furthermore, membership functions of both fuzzy model and sampled-data fuzzy controller are considered to alleviate the conservativeness of the stability analysis result. A simulation example is given to illustrate the merits of the proposed approach.  相似文献   

15.
This paper addresses the design of adaptive feedback controllers for two problems (namely, stabilization and synchronization) of chaotic systems with unknown parameters by considering input saturation constraints. A novel generalized sector condition is developed to deal with the saturation nonlinearities for synthesizing the nonlinear and the adaptive controllers for the stabilization and synchronization control objectives. By application of the proposed sector condition and rigorous regional stability analysis, control and adaptation laws are formulated to guarantee local stabilization of a nonlinear system under actuator saturation. Further, simple control and adaptation laws are developed to synchronize two chaotic systems under uncertain parameters and input saturation nonlinearity. Numerical simulation results for Rössler and FitzHugh–Nagumo models are provided to demonstrate the effectiveness of the proposed adaptive stabilization and synchronization control methodologies.  相似文献   

16.
This article is concerned with master–slave synchronization for two chaotic Hindmarsh–Rose neurons. The main contribution of this article is that three synchronization criteria are derived by using linear feedback control without the estimation of bounds of state variables of controlled slave neurons. Three simulation examples are used to illustrate the effectiveness of our results. © 2015 Wiley Periodicals, Inc. Complexity 21: 319–327, 2016  相似文献   

17.
In this paper, a simple adaptive feedback control is proposed for full and reduced-order synchronization of time-varying and strictly uncertain chaotic systems. Our method uses only one feedback gain with parameter adaptation law and converges very fast even in the presence of noise. For full synchronization, a drive-response system consisting of two second-order identical parametrically excited oscillators achieve global synchronization; while for reduced-order synchronization, the dynamical evolution of a second-order parametrically driven oscillator is synchronized with the projection of a third-order time-varying chaotic system. The effectiveness of our approach is demonstrated using numerical simulations.  相似文献   

18.
In this article, a fuzzy adaptive control scheme is designed to achieve a function vector synchronization behavior between two identical or different chaotic (or hyperchaotic) systems in the presence of unknown dynamic disturbances and input nonlinearities (dead‐zone and sector nonlinearities). This proposed synchronization scheme can be considered as a generalization of many existing projective synchronization schemes (namely the function projective synchronization, the modified projective synchronization, generalized projective synchronization, and so forth) in the sense that the master and slave outputs are assumed to be some general function vectors. To practically deal with the input nonlinearities, the adaptive fuzzy control system is designed in a variable‐structure framework. The fuzzy systems are used to appropriately approximate the uncertain nonlinear functions. A Lyapunov approach is used to prove the boundedness of all signals of the closed‐loop control system as well as the exponential convergence of the corresponding synchronization errors to an adjustable region. The synchronization between two identical systems (chaotic satellite systems) and two different systems (chaotic Chen and Lü systems) are taken as two illustrative examples to show the effectiveness of the proposed method. © 2015 Wiley Periodicals, Inc. Complexity 21: 234–249, 2016  相似文献   

19.
This article aims to introduce a projective synchronization approach based on adaptive fuzzy control for a class of perturbed uncertain multivariable nonaffine chaotic systems. The fuzzy‐logic systems are employed to approximate online the uncertain functions. A Lyapunov approach is used to design the parameter adaptation laws and to demonstrate the boundedness of all signals of the closed‐loop system as well as the convergence of the synchronization errors to bounded residual sets. Finally, numerical simulation results are presented to verify the feasibility and effectiveness of the proposed synchronization system based on fuzzy adaptive controller. © 2014 Wiley Periodicals, Inc. Complexity 21: 180–192, 2015  相似文献   

20.
Synchronization under output feedback control with multiple random time delays is studied, using the paradigm in nonlinear physics—Chua’s circuit. Compared with other synchronization control methods, output feedback control with multiple random delay is superior for a realistic synchronization application to secure communications. Sufficient condition for global stability of delay-dependent synchronization is established based on the LMI technique. Numerical simulations fully support the analytical approach, in spite of the random delays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号