首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 The impact of spilled explosives, their by-products and degradation products on human beings and the environment has been recognised as a serious problem at areas of existing and former ammunition plants. In nature, aerobic and anaerobic degradation processes of explosives and their accompanying compounds yield polar contaminants with relatively high water solubilities. Most are potentially carcinogenic and mutagenic. An HPLC method applying UV-detection for nitroaromatic compounds and amperometric detection for aminoaromatic and phenolic compounds was used for monitoring the degradation of explosives in a polluted groundwater sample under natural conditions. Analysis was performed by direct injection of aliquots of the sample after exposition to daylight for different periods of time. Received: 6 January 1996/Revised: 7 March 1996/Accepted: 13 March 1996  相似文献   

2.
Summary The insufficient ability of one dimensional HPLC to separate complex mixtures such as environmental samples can be overcome by using two dimensional systems combining columns with alternative/orthogonal selectivities. Such a system for the separation of complex mixtures of explosives, their by-products and degradation products from environmental samples was developed and evaluated. It makes use of the different retention characteristics of an alkyl modified silica and a safrol modified silica in the reversed phase mode. The high peak capacity of two dimensional systems predicted by theory was realized employing a flexible switching technique and utilizing differences in the elution strength of the mobile phases. Thus, peak compression on the head of the second column was exploited. The efficiency of the two dimensional system was demonstrated for the separation of a complex mixture of nitroaromatic reference compounds. Furthermore, the system was applied to separate and identify nitro and nitroamino organic compounds in a groundwater sample from a former ammunition plant. Presented at: Balaton Symposium on High-Performance Separation Methods, Siófok Hungary, September 3–5, 1997  相似文献   

3.
Hot water is attracting attention as an extraction solvent in the recovery of compounds from plant material as the search for milder and “greener” solvents intensifies. The use of hot water as an extraction solvent for milk thistle at temperatures above 100°C was explored. The maximum extraction yield of each of the silymarin compounds and taxifolin did not increase with temperature, most likely because significant compound degradation occurred. However, the time required for the yields of the compounds to reach their maxima was reduced from 200 to 55 min when the extraction temperature was increased from 100 to 140°C. Severe degradation of unprotected (plant matrix not present) silymarin compounds was observed and first-order degradation kinetics were obtained at 140°C.  相似文献   

4.
In this work we evaluate the influence of thermal desorber temperature on the analytical response of a swipe-based thermal desorption ion mobility spectrometer (IMS) for detection of trace explosives. IMS response for several common high explosives ranging from 0.1 ng to 100 ng was measured over a thermal desorber temperature range from 60 °C to 280 °C. Most of the explosives examined demonstrated a well-defined maximum IMS signal response at a temperature slightly below the melting point. Optimal temperatures, giving the highest IMS peak intensity, were 80 °C for trinitrotoluene (TNT), 100 °C for pentaerythritol tetranitrate (PETN), 160 °C for cyclotrimethylenetrinitramine (RDX) and 200 °C for cyclotetramethylenetetranitramine (HMX). By modifying the desorber temperature, we were able to increase cumulative IMS signal by a factor of 5 for TNT and HMX, and by a factor of 10 for RDX and PETN. Similar signal enhancements were observed for the same compounds formulated as plastic-bonded explosives (Composition 4 (C-4), Detasheet, and Semtex). In addition, mixtures of the explosives exhibited similar enhancements in analyte peak intensities. The increases in sensitivity were obtained at the expense of increased analysis times of up to 20 seconds. A slow sample heating rate as well as slower vapor-phase analyte introduction rate caused by low-temperature desorption enhanced the analytical sensitivity of individual explosives, plastic-bonded explosives, and explosives mixtures by IMS. Several possible mechanisms that can affect IMS signal response were investigated such as thermal degradation of the analytes, ionization efficiency, competitive ionization from background, and aerosol emission.  相似文献   

5.
There has been a recent surge in applications of mass spectrometry (MS) to tissue analysis, particularly lipid-based tissue imaging using ambient ionization techniques. This recent growth highlights the need to examine the effects of sample handling, storage conditions, and experimental protocols on the quality of the data obtained. Variables such as time before freezing after organ removal, storage time at −80 °C, time stored at room temperature, heating, and freeze/thaw cycles were investigated for their effect on the data quality obtained in desorption electrospray ionization (DESI)-MS using mouse brain. In addition, analytical variables such as tissue thickness, drying times, and instrumental conditions were also examined for their impact on DESI-MS data. While no immediate changes were noted in the DESI-MS lipid profiles of the mouse brain tissue after spending 1 h at room temperature when compared to being frozen immediately following removal, minor changes were noted between the tissue samples after 7 months of storage at −80 °C. In tissue sections stored at room temperature, degradation was noted in 24 h by the appearance of fatty acid dimers, which are indicative of high fatty acid concentrations, while in contrast, those sections stored at −80 °C for 7 months showed no significant degradation. Tissue sections were also subjected to up to six freeze/thaw cycles and showed increasing degradation following each cycle. In addition, tissue pieces were subjected to 50 °C temperatures and analyzed at specific time points. In as little as 2 h, degradation was observed in the form of increased fatty acid dimer formation, indicating that enzymatic processes forming free fatty acids were still active in the tissue. We have associated these dimers with high concentrations of free fatty acids present in the tissue during DESI-MS experiments. Analytical variables such as tissue thickness and time left to dry under nitrogen were also investigated, with no change in the resulting profiles at thickness from 10 to 25 μm and with optimal signal obtained after just 20 min in the dessicator. Experimental conditions such as source parameters, spray solvents, and sample surfaces are all shown to impact the quality of the data. Inter-section (relative standard deviation (%RSD), 0.44–7.2%) and intra-sample (%RSD, 4.0–8.0%) reproducibility data show the high quality information DESI-MS provides. Overall, the many variables investigated here showed DESI-MS to be a robust technique, with sample storage conditions having the most effect on the data obtained, and with unacceptable sample degradation occurring during room temperature storage.  相似文献   

6.
The ratio between the numbers of structural formulas of C,H,N,O-containing energetic compounds belonging to the classes of fuels (low values of the oxygen coefficientA), explosives (mediumA), and oxidants (highA values) was studied by a computer generation procedure. The number of the theoretically possible structural formulas was found to decrease rapidly on going from fuels to explosives and then to oxidants; this observation agrees with the data on the numbers of various energetic compounds currently used and proposed. The strategy of the search for new compounds with the specified properties is described in brief, and its applicability to the search for explosives and oxidants with a small (up to 12) number of atoms in a molecule is evaluated. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1304–1310, July, 1998.  相似文献   

7.
We determine the sensitivity of several commercial atmospheric pressure ionization mass spectrometers towards ambient vapors, ionized by contact with an electrospray of acidified or ammoniated solvent, a technique often referred to as secondary electrospray ionization (SESI). Although a record limit of detection of 0.2 × 10−12 atmospheres (0.2 ppt) is found for explosives such as PETN and 0.4 ppt for TNT (without preconcentration), this still implies the need for some 108–109 vapor molecules/s for positive identification of explosives. This extremely inefficient use of sample is partly due to low charging probability (∼10−4), finite ion transmission, and counting probability in the mass spectrometer (1/10 in quadrupoles), and a variable combination of duty cycle and background noise responsible typically for a 103 factor loss of useful signal.  相似文献   

8.
The aqueous instability of pyrethroids and other compounds usually found in commercial pesticide formulations has been demonstrated in this work. Several types of sample treatment have been studied to avoid analyte losses during sample manipulation and storage. Analysis was performed by SPME–GC–MS. Addition of sodium thiosulfate to tap water prevented pyrethroid degradation as a result of oxidation by free chlorine. The amount added was optimized to minimize the effect of the salt on the analytical results. Analysis of samples that had been stored at 4 °C for several days revealed loss of some of the pyrethroids in the first period of storage. The effect of freezing the samples was studied and it was confirmed that samples could be stabilized for at least one week by freezing. Finally, addition of a miscible organic solvent, for example acetone, led to improvement of the analytical precision. The quality of the SPME–GC–MS method was studied. Linearity (R > 0.993), repeatability (RSD < 15%), and sensitivity (detection limits between 0.9 and 35 pg mL−1) were good. When the procedure was applied to real samples including run off and waste water some of the target compounds were identified and quantified.   相似文献   

9.
Summary A procedure is described for the (non-target) screening of hetero-atom-containing compounds in tap and waste water by correlating data obtained by gas chromatography (GC) using atomic emission (AED) and mass selective (MS) detection. Solid-phase extraction (SPE) was coupled on-line to both GC systems to enable the determination of microcontaminants at the 0.02–1 μg L−1 level in 7–50 mL of aqueous sample. The screening was limited to compounds present in at least one heteroatom-selective GC-AED trace above a predetermined concentration level. These compounds were identified by their partial formulae (AED) and the corresponding mass spectra, which were obtained from the GC-MS chromatogram via the retention index concept. The potential of the approach was demonstrated by the identification of target compounds as well as all unknowns present in tap and waste water above the predetermined threshold of 0.05 μg L−1 (tap water) or 0.5 μg L−1 (waste water).  相似文献   

10.
CE methods have been developed for the analysis of organic and peroxide-based explosives. These methods have been developed for deployment on portable, in-field instrumentation for rapid screening. Both classes of compounds are neutral and were separated using micellar electrokinetic chromatography (MEKC). The effects of sample composition, separation temperature, and background electrolyte composition were investigated. The optimised separation conditions (25 mM sodium tetraborate, 75 mM sodium dodecyl sulfate at 25 °C, detection at 200 nm) were applied to the separation of 25 organic explosives in 17 min, with very high efficiency (typically greater than 300,000 plates m−1) and high sensitivity (LOD typically less than 0.5 mg L−1; around 1–1.5 μM). A MEKC method was also developed for peroxide-based explosives (10 mM sodium tetraborate, 100 mM sodium dodecyl sulfate at 25 °C, detection at 200 nm). UV detection provided LODs between 5.5 and 45.0 mg L−1 (or 31.2–304 μM), which is comparable to results achieved using liquid chromatography. Importantly, no sample pre-treatment or post-column reaction was necessary and the peroxide-based explosives were not decomposed to hydrogen peroxide. Both MEKC methods have been applied to pre-blast analysis and for the detection of post-blast residues recovered from controlled, small scale detonations of organic and peroxide-based explosive devices.  相似文献   

11.
Two molecularly imprinted silicas (MISs) were synthesized and used as selective sorbents for the extraction of nitroaromatic explosives in post-blast samples. The synthesis of the MISs was carried out with phenyltrimethoxysilane as monomer, 2,4-dinitrotoluene (2,4-DNT) as template and triethoxysilane as cross-linker by a sol–gel approach in two molar ratios: 1/4/20 and 1/4/30 (template/monomer/cross-linker). Non-imprinted silica sorbents were also prepared following the same procedures without introducing the template. An optimized procedure dedicated to the selective treatment of aqueous samples was developed for both MISs for the simultaneous extraction of the template and other nitroaromatic compounds commonly used as explosives. The capacity of the MISs was measured by the extraction of increasing amounts of 2,4-DNT in pure water and is higher than 3.2 mg/g of sorbent for each MIS. For the first time, four nitroaromatic compounds were selectively extracted and determined simultaneously with extraction recoveries higher than 79%. The potential of these sorbents was then highlighted by their use for the clean-up of post-blast samples (motor oil, post-mortem blood, calcined fragments, etc.). The results were compared to those obtained using a conventional sorbent, thus demonstrating the interest of the use of these MISs as selective sorbents.  相似文献   

12.
The environmental remediation of military installation sites is very important due to frequently large presence of carcinogenic derivatives of explosives in the ground and in ground waters. These nitroaromatic explosives and their derivatives are assessed by sensing devices. It is highly important to have insight on the reasons affecting the reduction potentials of these compounds. The redox properties of mono‐, di‐ and tri‐nitroaromatic compounds are studied with cyclic voltammetry at a glassy carbon electrode for comparison. We show that the presence of a methyl group in the aromatic system leads into more negative reduction potentials. The ease of nitro group reduction vary from meta>para>ortho positions relative to a methyl group. The redox properties were also studied at various pH ranging from 2 to 10. Acidic environments facilitated the reduction processes at lower potentials. These findings will have a profound influence upon understanding the processes during reductive decontaminations of the polluted sites as well as for construction of highly sensitive sensors for their determination.  相似文献   

13.
Summary Improvements in selectivity and sensitivity in the analysis of common explosives, like nitrate esters, nitramines and nitroaromatic compounds can be achieved by post-column derivatisation in a two step reaction detector. The first step in derivatisation is the photolysis of the analytes with UV at 254 nm. The photo reactor consists of a crocheted 20 m Tefzel capillary, which is coiled around a low pressure mercury lamp. In second step the nitrite ion generated is subsequently detected by a colourimetric reaction. The azo dye formed can be selectively detected at 540 nm.Addition of alkali after chromatographic separation to prevent oxidation of initially formed nitrite to nitrate during photolysis leads to a complex multistage arrangement. However, the contribution to peak broadening by the reactor is negligible and it is possible to detect 25–50 ppb of nitramines and 30–100 ppb of nitrate esters. Another advantage of the method is the selective detection of nitro compounds, even in complex matrices.The trace analysis of explosives is of growing interest in forensic science as well as in environmental analysis. It has been shown [1] that explosives can easily be extracted from soil and debris by the use of supercritical carbon dioxide. The separation and determination of explosives by gas chromatography is hindered by their thermal instability. In HPLC only the nitro aromatic explosives can be detected with sufficient sensitivity. Other types of explosives like the esters of nitric acid or nitramines do not absorb sufficiently in the UV region for sensitive detection. It has been shown [2] that explosives are liable to photochemical decomposition in the UV region, resulting in nitrate and nitrite, which have been detected after separation by ion-pair chromatography with electrochemical detection. A more sensitive and selective detection of nitrite has been possible in flow injection analysis [3]. Here a modified Griess reaction has been used. In a first step nitrite ions are used to form the diazonium salt with sulfanilamide which is coupled in a second step with N-[naphthyl-(1)]-ethylene diamine (NED) to form a redviolet azo dye with an absorption maximum at 540 nm. The advantage of this method is selective detection in the visible region, where hardly any other organic components are detected, which might be present in a crude environmental sample.In this paper the transfer of the Griess reaction to post-column derivatisation in RP chromatography of explosives will be described, and the optimisation of trace analysis of these solutes will be discussed.  相似文献   

14.
The thermal decomposition of explosives: pentaerythrol tetranitrate (PETN), 2,4,6-trinitrotoluene(TNT), cyclo-1,3,5-trimethylene-2,4,6-trinitroamine (RDX) and their two-component mixtures with 40% of lead compounds [PbO, Pb3O4, Pb(NO3)2] were performed. The simple method of determination of stability changes in the mixtures described above, in comparison with pure explosives was presented. The lead oxides accelerated significantly the thermal decomposition of explosives. Pb(NO3)2 acts as a catalyst in the mixture containing TNT degradation, but not in a case of PETN and RDX. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Small concentrations of toxic compounds in atmospheric air have often to be measured selectively by portable equipment. Ion mobility spectrometers are instruments used to monitor explosives, drugs and chemical warfare agents. First responders also need to detect hazardous gases released in accidents while transporting them or in their production in chemical plants. Not all toxic gases can be measured with the time of flight ion mobility spectrometer at concentrations required by safety standards applied in workplace areas. The time of flight ion mobility spectrometer is based on an inlet membrane, an ionization region, a shutter grid and the drift region with a detector in the drift tube. The separation of ions is due to the different mobility of the ions when they are exposed to a weak electric field (E = 200…300 V/cm). High field asymmetric waveform spectrometry or differential mobility spectrometry is a relative new ion mobility spectrometer technology. The separation is due to the different mobilities of the ions in the high (E = 15000...30000 V/cm) and the weak electric fields. About 30 different toxic industrial chemical compounds were analyzed with both systems under comparable conditions. For selected examples the detection limits, the selectivity and the identification capabilities of the two systems for some of the main compounds will be discussed.  相似文献   

16.
Atmospheric pressure chemical ionization mass spectrometry was used to predict the oxidative status of virgin olive oils (VOO) during their storage. VOO samples, with and without phenolic compounds, were stored in the dark at 60 °C up to 7 weeks. The VOO samples were diluted in an alkaline propanol/methanol mixture and directly infused into an ion-trap mass spectrometer. The abundances of the [M−H] peaks of free fatty acids, oxidized fatty acids, tocopherols and phenolic compounds, jointly with their oxidized forms, were measured and used as predictors. Two linear discriminant analysis (LDA) models were constructed in order to classify samples according to their oxidative levels. The first model was constructed using both VOO samples (with and without phenols), considering as predictors only fatty acids and their oxidized products. The second LDA model was constructed with the VOO sample with phenolic compounds considering as predictors all the peaks measured. In both models, the samples divided in the eight different storage times were correctly classified (100%) by leave-one-out cross-validation with an excellent resolution among all the category pairs (for the first model Wilks’ lambda, λ w = 0.229 and for the second λ w = 0.928). This method is a very fast tool for on-line monitoring of VOO oxidation status.  相似文献   

17.
An isocratic LC method for the determination of melamine and its degradation products (ammelide, ammeline, and cyanuric acid), used to increase the apparent protein content of rice protein concentrate, has been developed. Method development involved optimization of different RP columns, aqueous mobile phases, pH, phosphate concentration, and temperature. The optimum separation of these compounds was achieved using a Luna CN column (30 °C), 5 mmol L−1 sodium phosphate (pH 5.0) as mobile phase, 1 mL min−1 flow-rate, UV absorbance-DAD detection at 220 nm, and resorcine as internal standard; this enabled separation of these compounds with baseline resolution (values in the 2.1–10.1 range) in about 8 min. Prior to HPLC, the developed sample preparation procedure consisted in a leaching process using the above mentioned mobile phase. Method validation was carried out in rice protein concentrates in accordance with the European Commission decision 2002/657/EC criteria. For this purpose, eight mandatory performance characteristics for the conventional validation approach were determined: calibration graphs, extraction efficiencies, decision limits, detection capabilities, precision (repeatability and within-laboratory reproducibility), accuracy, selectivity, and robustness. The extraction efficiencies for these compounds were in the range 99–100% and the within-laboratory reproducibility at 1.0, 1.5, and 2.0 detection capabilities concentration levels were smaller than 5, 4, and 3%, respectively. Finally, the proposed method was successfully applied to the analysis of other rice protein concentrates and several animal feed samples.  相似文献   

18.
Two components of electronic wastes (sample A – a mixture of three types of printed circuit boards, sample B – a mixture of electronic junctions with metal wires) were investigated using thermogravimetric analysis (TG). Thermogravimetric and derivative thermogravimetric data (TG and DTG) give information on the thermal stability of A and B samples and allows finding the correct conditions for their degradation using pyrolysis in an experimental system, built on the laboratory scale for utilization of hazardous wastes. X-ray fluorescence measurements prove that brominated flame retardant is present in sample A, whilst chlorinated flame retardant is a probable component of sample B. Preliminary liquid chromatography of oil products obtained as a result of thermal waste degradation shows that the hydrocarbons released during pyrolysis could be used as a fuel.  相似文献   

19.
Bicyclic compounds containing phosphorus on their skeleton such as 2,4,6-trioxa-1-phosphabicyclo[2,2,2]octane-4-methanol phosphate (PEPA) having three active ingredients required for intumescence have been synthesized. The structural characterization of PEPA was carried out by FT-IR, 1H and 13C NMR. The thermal behaviour of the material was studied using TGA, TGA–MS and pyrolysis GC–MS. Thermogravimetric analysis reveals that PEPA undergoes several stages of degradation with a char of about 12% at 800 °C. The TGA–MS studies indicate that the material degrades with the liberation of water, formaldehyde, alkene and alcohols as the major degradation products. Pyrolysis GC–MS results reveal that PEPA isomerizes in the acidic medium. PEPA and/or isomers of PEPA react with formaldehyde, one of the degradation products, to form cross-linked structure and cyclic products with the elimination of water molecule. The thermal degradation mechanisms for PEPA are presented and discussed.  相似文献   

20.
The ability to separate nitroaromatic and nitramine explosives in seawater sample matrices is demonstrated using both MEKC and CEC. While several capillary-based separations exist for explosives, none address direct sampling from seawater, a sample matrix of particular interest in the detection of undersea mines. Direct comparisons are made between MEKC and CEC in terms of sensitivity and separation efficiency for the analysis of 14 explosives and explosive degradation products in seawater and diluted seawater. The use of high-salt stacking with MEKC results, on average, in a three-fold increase in the number of theoretical plates, and nearly double resolution for samples prepared in 25% seawater. By taking advantage of long injection times in conjunction with stacking, detection limits down to sub mg/L levels are attainable; however, resolution is sacrificed. CEC of explosive mixtures using sol-gels prepared from methyltrimethoxysilane does not perform as well as MEKC in terms of resolving power, but does permit extended injection times for concentrating analyte onto the head of the separation column with little or no subsequent loss in resolution. Electrokinetic injections of 8 min at high voltage allow for detection limits of explosives below 100 microg/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号