首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal behavior of films of amorphous silk fibroin in the random-coil conformation has been investigated in the temperature range 25–220°C by differential scanning calorimetry (DSC), thermal expansion, dynamic mechanical measurements, x-ray diffraction, and infrared spectroscopy. As the temperature is raised, water is lost up to about 100°C. Intramolecular and intermolecular hydrogen bonds are broken between 150 and 180°C. The glass transition is observed at 173°C by DSC. The random-coil→β-form transition accompanied by reformation of hydrogen bonds takes place above 180°C. Thermally induced crystallization to the β-form crystals starts at about 190°C.  相似文献   

2.
The crystalline transition induced by immersion in a methanol/water mixture of tussah silk fibroin (from Antheraea pernyi) film obtained by casting from a 1% solution was studied by x-ray diffraction, differential scanning calorimetry, and infrared spectroscopy. The molecular conformation of the fibroin, consisting mostly of the α-helix and random-coil forms, was transformed into a random-coil and β-rich conformation containing only a small amount of α-helix after immersion for no more than 5 min. The intersheet packing of the β-crystal of the original tussah silk fibroin film was imperfect in the early stage of immersion. However, crystallization proceeded further when the immersion time exceeded 10 min. As a result the sheets in the β-form crystal became closely packed because of the decrease in the content of the random-coil form. The exothermic peak, which appeared at 226°C in the original fibroin and was attributed to the random-coil → β-structure transition, disappeared completely after immersion for 5 min.  相似文献   

3.
Crystals of fractionated trans-1,4-polyisoprene (TPI) were grown from amyl acetate solution at two weight fractions, 5.7 × 10?4 and 0.011; for the lower concentration a precooling followed by heating and then crystallization at temperatures in the 10–32°C range was used, while for the higher concentration this method and direct crystallization at a temperature TC in the 0–32°C range were employed. The precooling method yielded samples crystallized in the α form, while direct crystallization led to formation of β-TPI at low TC and α at higher TC. The value for the DSC endotherm, characteristic of α-form melting, increased with increasing TC, with a shift to lower values with increasing concentration for precooled samples. A β to α transformation was found to occur for synthetic unfractionated TPI when swollen with amyl acetate at 35°C for 17h. Swelling in n-butyl acetate for one day at 25°C or 17 h at 35°C also led to this transformation. From experimental results 74°C is chosen as the temperature at which the α and β forms coexist in the bulk, and this is used to calculate the enthalpy of fusion of β-TPI, yielding a value of 8.6 kJ mol?1.  相似文献   

4.
Samples of isotactic polypropylene (PP) were zone-solidified in temperature gradients up to 300°C/cm at growth rates down to 3 μm/min. Oriented α-type spherulites were obtained only by nucleation. While β nucleation is extremely rare, the β phase is easily initiated by growth transformations along the oriented α front. Since the β phase was found to grow considerably faster than the α phase, the α-to-β transformation points diverge across the sample, interrupting growth of the oriented α fibrils. This causes subsequent nucleation to yield teardrop-shaped α spherulites. Differential scanning calorimetry (DSC) studies of zone-solidified PP show the β-phase to be favored by slow growth rates, high temperature gradients, and large degrees of superheat in the melt—all of which tend to suppress nucleation. Differential thermograms of largely β-PP obtained at a heating rate of 1°C/min show the actual melting and recrystallization of the β spherulites into the α form.  相似文献   

5.
Six 6,10-ionenes with different counterions were prepared by ion exchange reactions in aqueous solutions. The counterions were Br, I, CIO4, BF4, SCN, and B(C6H5)4. The dynamic mechanical properties of these polymers were investigated by use of a torsional braid analyser. Three relaxations α (25–140°C), β (?30–0°C), and γ (?140–120°C) were observed at the frequencies of 0.3–0.8 Hz. The temperature of the α and β relaxations were largely dependent on the size of counterions, but those of the γ relaxations had little variation. The effects of electrostatic forces in the polymers on each relaxation was discussed. The influence of absorbed water on the α, β, and γ relaxations was examined. The absorbed water in the polymers greatly depressed the temperature of the α relaxations and this phenomenon was interpreted to be the result of the specific hydration on ionic portions.  相似文献   

6.
Dielectric relaxation data have been obtained for two ethylene–methacrylic acid copolymers (containing about 4 mole-% methacrylic acid units and about 8 mole-% methacrylic acid units, respectively) and the lithium, sodium, and calcium salts prepared by partial neutralization of the polyacids. The frequency range employed was from 50 Hz to 10 kHz and the temperature range was from ?130°C to 100°C. Attention is focused on three dielectric loss regions labeled β, β and α in order of increasing temperature. The β′ process (?10°C at 100 Hz in the salts only) correlates with a mechanical loss process previously reported and is attributed to microbrownian motion taking place in an amorphous hydrocarbon phase. The β′ process (20°C at 100 Hz) has also been observed mechanically and is attributed to the same mechanism as the β process. The higher temperature of this relaxation compared to the β relaxation is attributed to the presence of acid groups which form crosslinks composed of interchain hydrogen bonds. The α process (>50°C at 100 Hz in the salts only) correlates with dielectric and NMR data previously reported for a sodium salt and is assigned to motions within ionic domains formed by the clustering of salt groups.  相似文献   

7.
Polymerization of p-xylylene was carried out from the gas phase with monomer produced by the pyrolysis of [2,2]-p-cyclophane. The crystalline form and preferred orientation of as-polymerized polymer deposited at various temperatures (?196 to 80°C) were investigated by x-ray diffraction methods. The melting behavior and other thermal transitions were studied by DSC. At 80°C the polymer film deposit is a mixture of the α and β forms, while between 60 and 0°C the deposit is of the α form. At lower temperature the polymer deposit is mainly of the β form, which shows diffuse reflections. At liquid nitrogen temperature it is of the β form with sharp reflections, contaminated with a small amount of oligomer. It was also found that at low temperatures, fibrillar crystals grow from the substrate in a direction 45° against the gas flow, and at even lower temperature, well-oriented filmlike crystals grow perpendicular to the substrate surface.  相似文献   

8.
Packing polymorphism and conformational disorder of poly(hexamethylene terephthalate) were analyzed by x-ray diffraction technique. The measurements were performed in the temperature range from 20 to 135°C. At high temperature, several unassignable reflections were found to disappear, and all reflections were satisfactorily indexed by single-chain unit cell. The crystal structures of β form (135°C) and β form (20°C) were similarly triclinic. The β′ unit cell assumed the double b-axis dimension, and the centrosymmetric conformations of the two chains adjacent along the b-axis differed in the orientation of the phenylene rings. At the elevated temperature (β form), the chains were indistinguishable by x-ray diffraction owing to the ring-flipping motion. The β and β′ structures were different in the local conformational disorder around the terephthaloyl groups. Conformational polymorphism of homologous poly(oligomethylene terephthalate)s was considered to originate from the difference in bulkiness of the aromatic and aliphatic residues. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
A study has been made of the mechanical, thermal, and morpholigical characteristics of melt-crystallized isotactic polypropylene containing high levels of the β or pseudohexagonal crystalline form. Different levels of β-form crystallinity were produced in the polymer by blending in low levels of quinacridone dye nucleating agent. Microscopical studies of the crystallization process revealed that both α-form (monoclinic), and β-form spherulites nucleated on the dye particles, with α-spherulite growth commencing at a higher temperature. These observations were able to qualitatively explain the dependence of β-form level on both the nucleant concentration and its state of dispersion in the polymer. Improving the dispersion of the nucleant was found to reduce the level of β-form crystallinity if the nucleant concentration exceeded an optimum level. A new procedure for quantifying the volume fraction of β spherulites in a sample was developed which utilized the technique of selective solvent extraction. From volume-fraction, x-ray, and density data, the pure α and β crystal densities were obtained. Dynamic mechanical measurements-obtained on unoriented specimens containing varying levels of β-form crystallinity showed an increase in the magnitude of the damping in the post-Tg region with increasing β content. High levels of the β form lead to lower values of the modulus and yield stress, and higher values of the elongation at break and impact strength.  相似文献   

10.
The crystal structure of poly(p-xylylene), as polymerized, is the α form. This transforms irreversibly to the β from by annealing or drawing. To clarify the mechanism of this transition, structural changes of the α and β crystals were examined with a high-temperature stage in the electron microscope. Two high-temperature phases, β1 and β2, were found and their structures were analyzed. In these structures lattice distortions due to rotational and translational motions of chains are in troduced, especially in the β2 form. The α → β transition is induced through such a disordered phase. The statistical arrangement of a molecule in the β-form unit cell results from freezing the disorder in the high-temperature phases.  相似文献   

11.
X-ray diffraction studies of fibers of the polyester/ether poly(ethylene-1,2-diphenoxyethane-p,p′ -dicarboxylate) (PEET) produced by high-speed melt spinning show the existence of two polymorphic forms, designated α and β, in the solid state. The α form is obtained by annealing filaments melt spun at takeup speeds below 3000 m/min and is also found in samples crystallized from the melt and from dilute solutions. The α form has a monoclinic unit cell with dimensions a = 7.83, b = 10.33, c = 18.68 Å, and β = 83.1°. The equilibrium melting temperature and heat of fusion of the α form are 288.3°C and 19.1 cal/g, respectively. The β form predominates in highly oriented filaments obtained at takeup velocities above 6000 m/min. The unit cell is orthorhombic with dimensions a = 7.28, b = 5.65, and c = 18.64 Å. The β form does not transform to the α form on annealing.  相似文献   

12.
Mechanical relaxation data as a function of temperature (ca. 1 Hz) have been obtained for several samples of isotactic polypropylene crystallized from the melt, which exhibit both α and β forms as well as varying degrees of lamella orientation. The samples ranged in morphology from an unoriented sample showing only the α form to one highly oriented having approximately 90 per cent the β form. Results for the logarithmic decrement Δ and loss modulus G″ are that the low temperature (ca. ?75°C) and glass temperature (ca. 0°C) relaxations show little or no sensitivity to orientation in the α form, but that the intensity of the two processes is different in the α form than in the β form for samples of nearly equal overall per cent crystallinity. In both Δ and G″, the low-temperature peak decreased and the glass temperature peak increased in intensity as the fraction of β form crystallinity present increased. Data for the high-temperature relaxation (ca. 80°C) indicate a dependence upon orientation and/or crystal form in addition to a dependence upon per cent crystallinity.  相似文献   

13.
To clarify the effect of a molecular arrangement of long-chain monomers on polymerizability, γ-ray-initiated postpolymerization of polymorphic crystals of octadecyl acrylate and the melt has been investigated. According to thermal, x-ray, and infrared (IR) analyses octadecyl acrylate exhibit three crystalline modifications similar to, but different in transition behavior from, those of octadecyl methacrylate. The α-form is stable in the range of 19–32°C (mp) and at lower temperatures the β-form is stable, whereas the sub-α-form appears transiently in α → β transition. The monomer molecules in triclinic packing (α-form) show little tendency to polymerize, whereas those in hexagonal packing (β-form) have high polymerizability that increases with temperature. The polymerizability in the molten state at fairly high temperatures is rather low, however. Thus the polymerization rate, saturated conversion, and polymer molecular weight exhibit maxima just above the melting point of α-form. It is concluded that the hexagonal packing of monomer molecules with particular orientation in the layered structure and rotational freedom around the molecular axis, together with some conformational freedom of functional group, is favorable to the polymerization reaction. In addition, the mechanism of polymerization in the layered structure is discussed, assuming a cone-type distribution for the polymerization probability.  相似文献   

14.
Structural changes in poly(L -alanine)(PLA), a model compound related to tussah silk fibroin, induced by heat treatment have been studied by differential thermal analysis, x-ray diffraction, and infrared spectroscopy. PLA heated below 300°C shows x-ray patterns very similar to those of the α-helix crystalline phase, in addition to the diffraction patterns due to the β structure. Samples heated at 368°C exhibit predominantly the diffraction patterns due to the β crystalline phase. From infrared spectra, PLA samples heated below 280°C are found to be composed of all three molecular conformations: β sheet, random coil, and α helix. The intensity of the infrared absorption at 650 cm?1 (amide V) assigned to the random coil conformation is decreased by heat treatment above 325°C. The content of the β-sheet structure remains almost constant when the specimen is heated below 325°C, and increases abruptly on heating to around 335°C, while the random coil content is decreased abruptly by heat treatment above 335°C. The α-helix content does not change, regardless of heat treatment. It is suggested therefore that the random coil conformation of PLA transforms directly into the β sheet on heat treatment above 335°C.  相似文献   

15.
The effects of nematic liquid crystalline polymer as a new β-nucleator (LCP-N) on crystallization structure and morphology of isotactic polypropylene (iPP) were investigated using wide-angle X-ray diffraction and polarized optical microscopy. The experimental results showed that LCP-N could lead to substantial changes in the crystallization structure and morphology of iPP. The nucleating activity of LCP-N mainly depended on its content, mesogenic molecules, and thermal history of processing. A high content of β-form (K β) was obtained by the combined effect of the optimum LCP-N content and crystallization temperature. The maximum K β reached 84% when the LCP-N content and crystallization temperature and time were 0.4 wt.%, 125°C, and 1 h, respectively. In addition, the birefringence of β spherulite was stronger than that of α spherulite; this difference is related to their particular way of growing and lamellar morphology. Due to its particular sheaf-like growth, the β spherulite was brighter and more colorful.  相似文献   

16.
The real and imaginary components of the complex piezoelectric strain constant, which relates the polarization to the applied stress, have been determined for elongated films of poly(γ-methyl L -glutamate) over the temperature range ?170°C to +170°C at a frequency of 20 Hz. The variation of the piezoelectric constant with temperature is similar for both α-helical and β-form molecular conformations. The sign of piezoelectric polarization is opposite for L and D polymers. A simple model, representing the piezoelectric crystallites as embedded in nonpiezoelectric amorphous regions, is proposed to account for the piezoelectric temperature dispersion curves.  相似文献   

17.
Formation and stability temperatures were determined for the three polymorphs of copper pyrovanadate. The low-temperature β phase is formed at 500°C and is stable from room temperature to 610°C. The intermediate phase is stable within 610–705°C. The high-temperature γ phase is stable within 710–780°C. The rates of γ → α and α → β phase transitions upon cooling differ considerably. α-Cu2V2O7 detected at room temperature upon cooling of a molten sample is metastable.  相似文献   

18.
γ-Ray-initiated postpolymerization of octadecyl methacrylate in polymorphic crystals and melt has been investigated to clarify the effect of molecular arrangement of the monomer on polymerizability. From thermal, x-ray, and infrared (IR) analyses this long-chain monomer exhibited three crystalline modifications that we refer to as α-, sub-α, and β-forms. The β-form (mp 28.7–29.7°C), which is obtainable from solution, is a stable state with triclinic chain packing. The α-form (mp 19.5–20.0°C), which is obtained first from the melt but transforms into β-form on storing, is a metastable state with hexagonal chain packing. The sub-α-form appears transiently in α→β transition. The polymerizability of octadecyl methacrylate in the β-form is extremely low, whereas the α-form can polymerize easily and the initial polymerization rate, saturated conversion, and polymer molecular weights increase with temperature. Polymerizability in the molten state at fairly high temperature is rather low, however. Thus maximum polymerizability is obtained just above the melting point of α-form. It has been found that particular orientation and suitable packing mode with some freedom of rotational motion of the monomer molecules in layered structure accelerate the polymerization reaction.  相似文献   

19.
In order to understand the formation of different crystal structures and improve the mechanical properties of isotactic polypropylene (iPP), melt vibration technology, which generally includes shear vibration and hydrostatic pressure vibration, was used to induce the change of crystal structure of iPP. iPP forms α crystal structure in traditional injection molding. Through melt vibration, crystal orientated and its size became smaller, and a change of crystal structure of iPP from α form to β form and γ form was achieved. Therefore, the mechanical properties of iPP were improved. At high melting temperature (230 °C), only β form can be induced. At low melting temperature (190 °C), either β form or γ form can be induced, depending on the combination of frequency and vibration pressure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2385–2390, 2004  相似文献   

20.
Oriented fibers of poly(pentamethylene terephthalate) will crystallize in one of two phases. In one phase (designated α), which is preferred in the unstressed fiber at room temperature, the chain is contracted from its chemical repeat length. In the other (designated β), induced by tension, it is nearly fully extended. The structural analysis of both forms is described. The unit cells of both phases are triclinic. The parameters of the α phase are a = 4.7 Å, b = 5.8 Å, c = 24.7 Å, α = 112°, β = 94°, γ = 105°. For the β phase they are a = 5.0 Å, b = 5.8 Å, c = 28.2 Å, α = 126°, β = 74°, γ = 120°. The methylene sequence is all trans in the β phase but, surprisingly, in the α phase, three of its bonds are near the eclipsed conformation. The other surprising feature is the departure from planarity of one of the terephthaloyl residues in the β phase. These, and other features of the structures are compared with those of other chemically similar materials, both monomeric and polymeric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号