首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal degradation of vinylidene chloride/phenylacetylene copolymers containing small but varying amounts of phenylacetylene has been examined in both the solid phase and in bibenzyl solution. Incorporation of phenylacetylene into the poly(vinylidene chloride) structure greatly facilitates degradative dehydrochlorination. Indeed, the presence of phenylacetylene promotes the formation of polyene segments during the polymerization process so that all the copolymers, even at very low phenylacetylene loading, are tan in color. The decreased stability of polymers containing interal unsaturation arises from an increased rate of initiation for degradative dehydrochlorination. The propagation rate is largely unaffected by the level of unsaturation initially present in the polymer. The ratio of hydrogen chloride to stilbene formed for degradation of these copolymers in bibenzyl solution is approximately 35:1. This suggests that the chlorine atom of the initially-formed radical pair preferentially abstracts an adjacent hydrogen atom rather than interacting with solvent, i.e., the chain-carrying radical pair does not dissociate appreciably as the unzipping dehydrochlorination occurs. Thus random double bonds introduced in a variety of ways may be identified as principal defect sites responsible for the initiation of the degradative dehydrochlorination of poly(vinylidene chloride). Species which promote the degradation of poly(vinylidene chloride) probably do so by facilitating the introduction of random double bonds into the structure.  相似文献   

2.
Vinylidene chloride copolymers are prominent in the barrier plastic packaging industry. These materials display excellent barrier to the transport of oxygen (and other small molecules) as well as flavor and aroma molecules. However, they suffer from a propensity to undergo degradative dehydrochlorination at process temperatures. To scavenge hydrogen chloride formed and prevent its interaction with the metallic components of process equipment, a passive base is usually included as an additive prior to processing. The base is most often an inorganic oxide or salt. These may negatively impact the properties of the polymer, particularly as a film. An organic base that could be covalently incorporated into the copolymer might display better behavior. Accordingly, a series of copolymers containing low levels of 4-vinylpyridine (0.05–3 mole%) have been prepared, characterized, and examined by thermogravimetry to assess thermal stability. In all cases, polymers containing 4-vinylpyridine units are less stable than the polymer containing none of this comonomer. Clearly, the pyridine moiety is a sufficiently strong base to promote E2 elimination of hydrogen chloride to generate dichlormethylene units in the mainchain from which thermal degradation may be initiated.  相似文献   

3.
The evidence for a radical elimination of hydrogen chloride during the thermal degradation of homopolymers and copolymers of vinylidene chloride is summarized and confirmed by an ESR spectroscopic study of the degradation residues. However, sufficient differences in the degradation characteristics exist between these polymers and those of vinyl chloride to suggest that a radical process alone is not sufficient. No evidence of a radical process can be obtained from an ESR spectroscopic analysis of the elimination. The paramagnetic character of the degraded polymer is attributed to the polyene structure produced on dehydrochlorination.  相似文献   

4.
As a consequence of their excellent barrier properties vinyl chloride/vinylidene chloride copolymers have long been prominent in the flexible packaging market. While these polymers possess a number of superior characteristics, they tend to undergo thermally- induced degradative dehydrochlorination at process temperatures. This degradation must be controlled to permit processing of the polymers. Three series of N-substituted maleimides (N-alkyl-, N-aralkyl, and N-aryl) have been synthesized, characterized spectroscopically, and evaluated as potential stabilizers for a standard vinyl chloride/vinylidene chloride (85 mass%) copolymer. As surface blends with the polymer, these compounds are ineffective as stabilizers. However, significant stabilization may be achieved by pretreatment of the polymer with N-substituted maleimides. The most effective stabilization of the polymer is afforded by N-aralkyl- or N-arylmaleimides, most notably, N-benzylmaleimide and N-p-methoxyphenylmaleimide.  相似文献   

5.
The thermal degradation of vinylidene chloride/methyl acrylate/phenylacetylene (VDC/MA/PA) terpolymers containing a constant 9 wt % methyl acrylate and small but varying amounts of phenylacetylene has been examined in the solid phase and in bibenzyl solution. Thermally promoted degradative dehydrochlorination, largely uncomplicated by methyl chloride formation, readily occurs at temperatures approaching 200°C. Incorporation of phenylacetylene into the polymer structure greatly facilitates degradative dehydrochlorination. Indeed, the presence of phenylacetylene induces the formation of polyene segments during the polymerization so that all the terpolymers, even at very low phenylacetylene loading, are tan in color. The decreased stability of polymers containing internal unsaturation arises from an increased rate of initiation for the degradation reaction. The propagation rate is largely unaffected by the level of unsaturation initially present in the polymer. Thus random double bonds have been identified as the principal defect sites responsible for the facile degradation of Saran copolymers. Species which promote the degradation of Saran polymers probably do so by facilitating the introduction of double bonds into the structure. The ratio of hydrogen chloride to stilbene formed for degradation of the terpolymers in bibenzyl solution is ca. 35:1. This is strongly reminiscent of PVDC degradation and suggests that for degradation of either the homopolymer or Saran copolymers the chain-carrying allylic radical pair does not dissociate to any appreciable extent as dehydrochlorination occurs.  相似文献   

6.
A concerted study of poly(vinyl chloride), chlorinated poly(vinyl chloride), and poly(vinylidene chloride) polymers by spectroscopy, thermal analysis, and pyrolysis-gas chromatography resulted in a proposed mechanism for their thermal degradation. Polymer structure with respect to total chlorine content and position was determined, and the influence of these polymer units on certain of the decomposition parameters is presented. Distinguishing differences were obtained for the kinetics of decomposition, reactive macroradical intermediates, and pyrolysis product distributions for these systems. It was determined that chlorinated poly(vinyl chloride) systems with long-chain ? CHCI? units were more thermally stable than the unchlorinated precursor, exhibited increasing activation energy for the dehydrochlorination, and produced chlorine-containing macroradical intermediates and chlorinated aromatic pyrolysis products. The poly(vinyl chloride) polymer was relatively less thermally stable, exhibited decreasing activation energy during dehydrochlorination, and produced polyenyl macro-radical intermediates and aromatic pyrolysis products.  相似文献   

7.
Vinylidene chloride copolymers have a number of superior properties, most notably, a high barrier to the transport of oxygen and other small molecules. As a consequence, these materials have assumed a position of prominence in the packaging industry. At processing temperatures these copolymers tend to undergo degradative dehydrochlorination. The dehydrochlorination reaction is a typical chain process with distinct initiation, propagation, and termination phases. It has been demonstrated that initiation of degradation is strongly facilitated by the presence of unsaturation along the backbone. Such unsaturation may be introduced via interaction of the polymer with a variety of agents which might commonly be encountered during polymerization or processing. The presence of an unsaturated unit within the polymer generates an allylic dichloromethylene which may function as a major defect (labile) site for the initiation of degradation. The conversion of these dichloromethylene units into non-reactive groups would interrupt propagation of the dehydrochlorination reaction and lead to the stabilization of the copolymer. Potential stabilization in the presence of metal formates has been examined using a vinylidene chloride/methyl acrylate (five mole percent) copolymer and thermogravimetric techniques. The effect of the metal formate on the stability of the polymer reflects the relative halogenophilicity of the metal cation present. Metal formates (sodium, calcium, nickel(II) and to a lesser extent lead(II), cadmium, manganese(II) and magnesium) may be expected to be ineffective as stabilizers for vinylidene chloride copolymers. At the other extreme, metal formates which contain cations sufficiently acidic to actively strip chlorine from the polymer backbone, e.g., zinc formate, will function to enhance the degradation process. An effective carboxylate stabilizer must contain a metal cation sufficiently acidic to interact with allylic chlorine and to facilitate its displacement by the carboxylate anion. Copper(II) formate may possess the balance of cation acidity and carboxylate activity to function as an effective stabilizer for vinylidene chloride copolymers.  相似文献   

8.
Vinylidene chloride polymers containing comonomer units capable of consuming evolved hydrogen chloride to expose good radical-scavenging sites might be expected to display greater thermal stability than similar polymers containing simple alkyl acrylates as comonomer. Incorporation of a comonomer containing the phenyl t-butyl carbonate moiety into a vinylidene chloride polymer has the potential to afford a polymer with pendant groups which might interact with hydrogen chloride to expose phenolic groups. Copolymers of vinylidene chloride with [4-(t-butoxycarbonyloxy)phenyl]methyl acrylate have been prepared, characterized, and subjected to thermal degradation. The degradation has been characterized by thermal and spectroscopic techniques. The degradation of vinylidene chloride/[4-(t-butoxycarbonyloxy)phenyl]methyl acrylate copolymers is much more facile than the same process for similar copolymers containing either [4-(isobutoxycarbonyloxy)phenyl]methyl acrylate or methyl acrylate, a simple alkyl acrylate, as comonomer. During copolymer degradation, [4-(t-butoxycarbonyloxy) phenylmethyl acrylate units are apparently converted to acrylic acid units by extensive fragmentation of the sidechain. Thus, the phenyl t-butyl carbonate moiety does function as a labile acid-sensitive pendant group but its decomposition in this instance leads to the generation of a phenoxybenzyl carboxylate capable of further fragmentation.  相似文献   

9.
The thermal degradation under vacuum or in nitrogen of commercial chlorinated rubber (ICI Alloprene, 64.5 wt.-% chlorine) was studied by isothermal thermogravimetry and by simultaneous TG/TVA with programmed heating by using a Cahn RG thermobalance built into a thermal volatilization analysis (TVA) system. Analysis of volatile products was performed by titration and by spectroscopic methods. The only major degradation product is hydrogen chloride; five-sevenths of the total available hydrogen chloride is lost with great ease, and complete dehydrochlorination is very much easier than in poly(vinylidene chloride). Conjugation develops early in the degradation, but the minor products methane, ethylene, and hydrogen are observed in the later stages of reaction. These features cannot be reconciled with the previously proposed cyclic structure for chlorinated rubber, and an alternative structure which accounts well for the degradation behavior is suggested.  相似文献   

10.
Vinylidene chloride copolymers have a number of superior properties, most notably a high barrier to the transport of oxygen and other small molecules. As a consequence, these materials have assumed a position of prominence in the packaging industry. At processing temperatures these copolymers tend to undergo degradative dehydrochlorination. Unsaturation generated via interaction of the polymer with a variety of agents commonly encountered during polymerization or processing introduces an allylic dichloromethylene unit which may function as a major defect (labile) site for the initiation of degradation. Three approaches to the potential stabilization of these materials have been examined. The first involved the addition of agents, e.g. metal formates, capable of converting labile dichlormethylene units into non-reactive groups which would interrupt propagation of the degradative dehydrochlorination. The second involved the incorporation into the polymer of a commoner capable of scavenging free chlorine atoms. The third involved the preparation of copolymers which contains units capable of reaction with (consumption of) a mole of hydrogen chloride to expose a good free radical stabilizer to scavenge chlorine atoms.  相似文献   

11.
The kinetics of the early stages of thermal degradation below 1% dehydrochlorination of emulsion-polymerized poly(vinylidene chloride) (PVDC) is studied by the variation of the pH value of potassium hydroxide aqueous solution between 160 and 190°C in the presence of air and other gas streams. The results turned out that the thermal degradation of PVDC can be divided into three stages, which correspond to an induction period, a period with conversion below 0.1% dehydrochlorination, and that with conversion ranging from 0.1 to 1%. For the induction stage, the induction time depends upon the types of environment gas and degradation temperature. Both of the second and the third stages are zero-order reactions, which also result in the discoloration and crosslinking of the neat polymer. The average apparent activational energy of the zero-order degradation reaction was about 21 kcal/mol, which is independent of the types of environment gas. The whole degrading kinetics data can be well explained by the mechanism of a free-radical-induced dehydrochlorination. The viscosity of the degraded sample increases rapidly with degradation and becomes insoluble in regular solvents. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2035–2044, 1999  相似文献   

12.
The course of the chlorination reaction of cis-1,4-polybutadiene is dependent on the choice of solvent. When methylene chloride is used, a pure addition reaction of chlorine leads to a polymer with the structure of head-to-head, tail-to-tail PVC. The thermal stability of the head-to-head PVC polymer has been studied by thermal volatilization analysis, thermogravimetry, and evolved gas analysis for hydrogen chloride, and the changes in the ultraviolet (UV) spectrum of the polymer during degradation have been investigated. The head-to-head polymer has a lower threshold temperature of degradation than normal PVC, but reaches its maximum rate of degradation at a higher temperature for powder samples of the polymer under programmed heating conditions. Blends of head-to-head PVC with poly(methyl methacrylate) have also been degraded, and the presence of the head-to-head polymers, like that of normal PVC, results in depolymerization of the PMMA as soon as the dehydrochlorination reaction commences. The mechanism of degradation of head-to-head PVC is discussed.  相似文献   

13.
14.
The degradation of the binary polymer blends, poly(vinyl acetate)/poly(vinyl chloride), poly(vinyl acetate)/poly(vinylidene chloride) and poly(vinyl acetate)/polychloroprene has been studied by using thermal volatilization analysis, thermogravimetry, evolved gas analysis for hydrogen chloride and acetic acid, and spectroscopic methods. For the first two systems named, strong interaction occurs in the degrading blend, but the polychloroprene blends showed no indication of interaction. In the PVA/PVC and PVA/PVDC blends, hydrogen chloride from the chlorinated polymer causes substantial acceleration in the deacetylation of PVA. Acetic acid from PVA destabilizes PVC but has little effect in the case of PVDC because of the widely differing degradation temperatures of PVA and PVDC. The presence of hydrogen chloride during the degradation of PVA results in the formation of longer conjugated sequences, and the regression in sequence length at high extents of deacetylation found for PVA degraded alone is not observed.  相似文献   

15.
The thermal degradation of poly(vinyl bromide) (PVB), poly(vinyl chloride) (PVC), poly(vinyl alcohol) (PVA), poly(vinyl acetate) (PVAc), poly(vinyl fluoride) (PVF), poly(vinylidene chloride) (PVC2), and poly(vinylidene fluoride) (PVF2) has been studied by direct pyrolysis–mass spectrometry (DP-MS) and flash pyrolysis–gas chromatography–mass spectrometry techniques. Vinyl and vinylidene polymers exhibit two competitive thermal degradation processes: (1) HX elimination with formation of polyene sequences which undergo further moleculaar rearrangements, and (2) main-chain cleavage with formation of halogenated or oxigenated compounds. The overall thermal degradation process depends on the prevailing decomposition reaction in each polymer; therefore, different behaviors are observed. The thermal degradation of polyacetylene (PA) has also been studied and found important for the elucidation of the thermal decomposition mechanism of the title polymers.  相似文献   

16.
The thermal decomposition of poly(vinylidene chloride) was studied for samples prepared in the presence of oxygen. The products from both mass and aqueous suspension polymerizations show two modes of thermal decomposition. A rapid initial mode varies in rate and extent with the amount of oxygen present. A slower mode is unaffected by oxygen and in similar in rate to the polymer made in the absence of oxygen. The chief volatile products are phosgene and formaldehyde for the rapid decomposition and hydrogen chloride for the slow decomposition. The rapid decomposition is interpreted to be an unzipping reaction of a vinylidene chloride–oxygen alternating copolymer initiated by homolysis of a peroxide bond. The absence of significant amounts of hydrogen chloride during this stage of decomposition shows that none of the free radicals generated are capable of initiating a chain reaction that would unzip hydrogen chloride from the poly(vinylidene chloride) backbone. The presence of oxygen during the aqueous suspension polymerization correlates with the generation of hydrochloric acid in the aqueous phase. By analogy with the high temperature decomposition, the hydrochloric acid is believed to result primarily from the hydrolysis of phosgene produced by partial decomposition of the polyperoxide. Initiation of the decomposition is believed due to a reaction of the chain propagating radical.  相似文献   

17.
Poly(vinyl chloride) (PVC) and some other chlorine-containing polymers belong to one of the most widely applied groups of thermoplastics. Their main disadvantage is the rather limited thermal stability, which requires the addition of heat stabilizers to prevent dehydrochlorination and discolouration. Hydrogen chloride is also the main volatile decomposition product during combustion of PVC; therefore, PVC-waste is less suited for the so-called thermal recycling. For the re-use of PVC and similar polymers it is necessary to characterize these products by molecular weight (or at least viscometry), internal double bonds and other defect structures, stability against the influence of heat (and in some cases of light) and a few other properties. The application of these methods for deciding about the re-usability of PVC roofing sheets and for the injection moulding of PVC scrap is demonstrated.  相似文献   

18.
The objective of the work described in this paper was to produce dispersions of small spherical carbon particles, having particle diameters in the region of 0.1 μm. To this end, the dehydrochlorination of poly(vinylidene chloride) (PVDC) latex particles was attempted. The PVDC latex was prepared by a dispersion polymerization route. Both chemical and thermal dehydrochlorination routes were attempted. Chemical dehydrochlorination, using a variety of base/solvent systems, led to nonporous, spherical black particles of the required size, but which contained only 60% carbon; most of the remainder was oxygen, introduced by nucleophilic substitution reactions. Thermal dehydrochlorination, at 700°C under a nitrogen atmosphere, using a fluidized bed arrangement, on the other hand, led to black particles, having 90% carbon and which retained their sphericity, but which were highly porous. Initial chemical dehydrochlorination, prior to thermal treatment, did not seem to reduce the porosity of the final carbons. Dispersions of the carbon particles in a variety of solvents were readily achieved.  相似文献   

19.
The modification of coatings resins by graft polymerization of vinylidene chloride should produce a coatings binder with improved barrier properties. For superior color stability, vinylidene chloride must be copolymer-ized with other monomers such as alkyl acrylates and methacrylates. Ceric ion initiation was used to graft vinylidene chloride free-radically onto a model alcohol-containing polymer, polyvinyl alcohol. The effects of various reaction parameters on vinylidene chloride grafting were studied. Graft copolymers were characterized using selective solvent extraction, FTIR, SEM, XES, DSC, and x-ray diffraction.  相似文献   

20.
The results of investigations on the thermal degradation of vinyl chloride (VC) homo- and copolymers in dilute and concentrated solutions are presented. Depending upon the nature of the solvent, the thermal degradation of VC polymers in solvents which do not react with the macromolecules may be accelerated or retarded compared with degradation in the solid phase. The effects are explained from the standpoint of the influence of solvation effects, i.e. specific (donor-acceptor) and non-specific (Van der Walls) interactions between macrochains and solvent molecules. Specific interactions between the solvent and the abnormal structures present in the macrochains of VC polymers bring about either a reduced or an increased rate of polymer dehydrochlorination, depending upon the basicity of the solvent, whilst non-specific solvation always tends to intensify the degradation of polymeric molecules due to the increased small-scale dynamics of macromolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号