首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lithium secondary batteries with high power density need the electrode materials with both high specific capacity and high tap density. An “outer gel” method by TiCl4 as the raw material has been developed to prepare spherical precursor. High tap density spherical Li4Ti5O12 is synthesized by sintering the mixture of precursor and Li2CO3. La-doped Li4Ti5O12 is also prepared by this method. X-ray diffraction, scanning electron microscopy, energy-dispersive spectrometry, tap density testing, and the determination of the electrochemical properties show that the Li4Ti5O12 powders prepared by this method are spherical and exhibits high tap density. La3+ dopant improved the electrochemical performance over the pristine Li4Ti5O12. It is tested that the tap density of the pristine and La3+-doped products is as high as 1.80 and 1.78 g•cm−3, respectively. Between 1.0 and 3.0 V versus Li, the initial discharge capacity of the La3+ dopant is as high as 161.5 mAh•g−1 at 0.1C rate. After 50 cycles, the reversible capacity is still 135.4 mAh•g−1.  相似文献   

2.
Spinel Li4Ti5O12 nanoparticles were prepared via a high-temperature solid-state reaction by adding the prepared cellulose to an aqueous dispersion of lithium salts and titanium dioxide. The precursors of Li4Ti5O12 were characterized by thermogravimetry and differential scanning calorimetry. The obtained Li4Ti5O12 nanoparticles were characterized using X-ray diffraction, transmission electron microscopy (TEM) and electrochemical measurements. The TEM revealed that the Li4Ti5O12 prepared with cellulose is composed of nanoparticles with an average particle diameter of 20–30 nm. Galvanostatic battery testing showed that nano-sized Li4Ti5O12 exhibit better electrochemical properties than submicro-sized Li4Ti5O12 do especially at high current rates, which can deliver a reversible discharge capacity of 131 mAh g−1 at the rate of 10 C, whereas that of the submicro-sized sample decreases to 25 mAh g−1 at the same rate (10 C). Its reversible capacity is maintained at ~172.2 mAh g−1 with the voltage range 1.0–3.0 V (vs. Li) at the current rate of 0.5 C for over 80 cycles.  相似文献   

3.
Y. Zou  N. Inoue 《Ionics》2006,12(3):185-189
The chemical shifts of 7Li MAS nuclear magnetic resonance spectra in La4/3−yLi3yTi2O6 (LLTO) showed negative values and decreased with increasing lithium concentration. The chemical shifts were interpreted by Pople’s theory in which the 7Li chemical shifts were due to the local paramagnetic currents of the closest oxygen ions. Lattice parameters and coordination of oxygen were obtained by Rietveld analysis of X-ray diffraction data. The gross population and electron excitation energy were calculated by DV-Xα method.  相似文献   

4.
M. Ganesan 《Ionics》2008,14(5):395-401
Chromium-substituted Li4Ti5O12 has been investigated as a negative electrode for future lithium batteries. It has been synthesized by a solid-state method followed by quenching leading to a micron-sized material. The minimum formation temperature of Li4Ti2.5Cr2.5O12 was found to be around 600 °C using thermogravimetric and differential thermal analysis. X-ray diffraction, scanning electron microscopy, cyclic voltammetry (CV), impedance spectroscopy, and charge–discharge cycling were used to evaluate the synthesized Li4Ti2.5Cr2.5O12. The particle size of the powder was around 2–4 μm. CV studies reveal a shift in the deintercalation potential by about 40 mV, i.e., from 1.54 V for Li4Ti5O12 to 1.5 V for Li4Ti2.5Cr2.5O12. High-rate cyclability was exhibited by Li4Ti2.5Cr2.5O12 (up to 5  C) compared to the parent compound. The conduction mechanism of the compound was examined in terms of the dielectric constant and dissipation factor. The relaxation time has been evaluated and was found to be 0.07 ms. The mobility was found to be 5.133 × 10−6 cm2 V−1 s−1.  相似文献   

5.
Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 (X=0.17, 0.25, 0.33, 0.5) compounds are prepared by a simple combustion method. The Rietvelt analysis shows that these compounds could be classified as having the α-NaFeO2 structure. The initial charge-discharge and irreversible capacity increases with the decrease of x in Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2. Indeed, Li[Ni0.50Mn0.50]O2 compound shows relatively low initial discharge capacity of 200 mAh/g and large capacity loss during cycling, with Li[Ni0.17Li0.22Mn0.61]O2 and Li[Ni0.25Li0.17Mn0.58]O2 compounds exhibit high initial discharge capacity over 245 mAh/g and stable cycle performance in the voltage range of 4.8 -2.0 V. On the other hand, XANES analysis shows that the oxidation state of Ni ion reversibly changes between Ni2+ and about Ni3+, while the oxidation state of Mn ion sustains Mn4+ during charge-discharge process. This result does not agree with the previously reported ‘electrochemistry model’ of Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2, in which Ni ion changes between Ni2+ and NI4+. Based on these results, we modified oxidation-state change of Mn and Ni ion during charge-discharge process.  相似文献   

6.
I. Ruth Mangani  C. W. Park  S. H. Kim  J. Kim 《Ionics》2005,11(5-6):366-369
A series of Li[CrxLi(1−x)/3Mn2(1−x)/3]O2 cathode materials were prepared by the sol-gel process. The structural characterization was carried out by fitting the XRD data by the Rietveld method. The results of X-ray diffraction show that the crystal structure is similar to that of thelayered lithium transition metal oxides (R3-m space group). The particle morphology and size were observed by SEM, and the elemental content was determined by ICP. The electrochemical performance of the cathode was evaluated in the voltage range of 2.0 ∼ 4.9 V with a current density of 7.947 mA/g. The Li1.27Cr0.2Mn0.53O2 electrode delivered a high reversible capacity of around 280 mAh/g in cycling. Li[CrxLi(1−x)/3Mn2(1−x)/3]O2 was found to be a promising cathode material. Paper presented at the International Conference on Functional Materials and Devices 2005, Kuala Lumpur, Malaysia, June 6 – 8, 2005.  相似文献   

7.
Ronghua Li  Ruiting Chen  Wenji Wang 《Ionics》2002,8(5-6):412-415
Perovskite-type lithium fast ion conductors of Li3xLa0.67−xScyTi1−2yNbyO3 system were prepared by solid state reaction. X-Ray powder diffraction shows that perovskite solid solution form in the ranges of x=0.10, y≤0.10. AC impedance measurements indicate that the bulk conductivities and the total conductivities are of the order of 10−4 S·cm−1 and 10−5 S·cm−1 at 25 °C respectively. The compositions have low bulk activation energies of about 17 kJ/mol in the temperature ranges of 298 – 523 K and total activation energies of about 37 kJ/mol in the temperature ranges of 298 – 523 K.  相似文献   

8.
《Current Applied Physics》2014,14(4):586-589
Stacked-nanoflake Li4Ti5O12 spinel was synthesized via the pyrolysis of a Li–Ti copolymeric precursor formed by in situ polymerization of LiOH and [Ti(OC4H9)4] and acrylic acid. XRD and SEM characterization shows that the powders calcined at 700 °C for 3 h was well-crystallized particles with submicron diameter. Charge–discharge measurement showed the Li4Ti5O12 electrode had displayed excellent rate capability and delivered reversible capacity of 171, 158, 148, 138 and 99 mAh g−1 at rates of 0.1C, 0.5C, 1C, 2C and 4C, respectively. The test electrode also showed excellent cyclability as the capacity retains 96.1% after 60 cycles between 0.5 and 2.5 V.  相似文献   

9.
Preparing spherical particles with carbon additive is considered as one effective way to improve both high rate performance and tap density of Li4Ti5O12 and LiFePO4 materials. Spherical Li4Ti5O12/C and LiFePO4/C composites are prepared by spray-drying–solid-state reaction method and controlled crystallization–carbothermal reduction method, respectively. The X-ray diffraction characterization, scanning electron microscope, Brunauer–Emmett–Teller, alternating current impedance analyzing, tap density testing, and electrochemical property measurements are investigated. After hybridizing carbon with a proper quantity, the crystal grain size of active materials is remarkably decreased and the electrochemical properties are obviously improved. The Li4Ti5O12/C and LiFePO4/C composites prepared in this work are spherical. The tap density and the specific surface area are as high as 1.71 g cm−3 and 8.26 m2 g−1 for spherical Li4Ti5O12/C, which are 1.35 g cm−3 and 18.86 m2 g−1 for spherical LiFePO4/C powders. Between 1.0 and 3.0 V versus Li, the reversible specific capacity of the Li4Ti5O12/C is more than 150 mAh g−1 at 1.0-C rate. Between 2.5 and 4.2 V versus Li, the reversible capacity of the LiFePO4/C is close to 140 mAh g−1 at 1.0-C rate.  相似文献   

10.
V. Thangadurai  W. Weppner 《Ionics》2000,6(1-2):70-77
We report the synthesis and lithium ion conductivity of di-, tri-, tetra- and hexavalent metal ion B-site substituted (Li,La)TiO3(LLT) perovskites. All 5–10 mol% Mg, Al, Mn, Ge, Ru and W ion substituted LLTs crystallize in a simple cubic or tetragonal perovskite structure. Among the oxides investigated, the Al-substituted perovskite La0.55Li0.360.09Ti0.995Al0.005O3 (□=vacancy) exhibits the highest lithium ion conductivity of 1.1 × 10−3 S/cm at room temperature which is slightly higher than that of the undoped (Li,La)TiO3 perovskite (8.9 × 10−4 S/cm) at the same temperature. The lithium ion conductivity of substituted LLTs does not seem to depend on the concentration of the A-site ion vacancies and unit cell volume. The high ionic conductivity of Al-substituted LLT is attributed to the increase of the B(Al)-O bond and weakening of the A(Li,La)-O bond. The conductivity behavior of the doped LLT is being described on the basis of Gibbs free energy considerations.  相似文献   

11.
H. Y. Liu  W. J. Wang  S. T. Wu 《Ionics》2002,8(3-4):278-280
Lithium fast ion conductors of the composition Li0.3La2/3Ti0.7P0.3−xVxO3.3 (LTV) based on mixtures of Li3xLa2/3−xTiO3 and LaPO4 were prepared by solid state reaction at high temperature (≈ 1300 °C). AC impedance measurements indicate total conductivities of about 1 × 10−4 Scm−1 for compositions of x=0∼0.3 at room temperature with an activation energy of ≈18 kJ·mol−1 in the temperature range from 30 to 400 °C. X-ray powder diffraction patterns showed that the LTV system is composed of Li3xLa2/3−xTiO3 perovskite solid solution and LaP1−xVxO4 solid solution.  相似文献   

12.
Hao Ge  Li Chen  Shen Lin  Xicheng Shi  Xi-Ming Song 《Ionics》2014,20(8):1189-1192
Spinel Li4Ti5O12 coated by highly dispersed nanosized Ag particles was synthesized via a facile and effective ultrasonic-assisted method in this paper. X-ray diffraction (XRD) results indicated that Ag was not doped into the lattice of spinel Li4Ti5O12. The as-synthesized Li4Ti5O12/Ag exhibited enhanced electronic conductivity and excellent electrochemical performances. Its electronic conductivity was increased about four times compared to that of the pristine Li4Ti5O12. Even at 10 C rate, the as-synthesized Li4Ti5O12/Ag could keep 86.5 % of the reversible capacity at 1 C rate and its reversible capacity was higher than 140 mAhg?1 whereas those were 75.3 % and 118 mAhg?1 for the pristine Li4Ti5O12.  相似文献   

13.
N. Inoue  Y. Zou 《Ionics》2005,11(1-2):76-80
The electronic state of La4/3−yLi3yTi2O6 (y=0.21) was studied by the DV-Xα cluster method. Four model clusters were used to calculate the density of state (DOS), the bond overlap population (BOP) and the net charge (NC). A Li ion in the model cluster was moved from 1b site to another 1b site along the x axis, and the BOP and the NC calculated were discussed. Furthermore, we calculated the potential energy with the movement of the Li ion along the x axis. Paper presented at the Patras Conference on Solid State Ionics - Transport Properties, Patras, Greece, Sept. 14 – 18, 2004.  相似文献   

14.
Substituting the ramsdellite compound Li2Ti3O7 has been considered in order to improve the structure stability and performances for its use as electrode material for Li-ion accumulators. Two substitutions have been carried out, Ti/Fe and (Ti, Li)/(Fe,Ni). The presence of 57Fe as a local Mössbauer probe is interesting for studying its local environment and the electrochemical mechanisms induced by lithium insertion.  相似文献   

15.
Li4Ti5O12 for anodic active material of lithium ion batteries is synthesized using different Li/Ti ratios of 3.5/5.0, 4.0/5.0 and 4.5/5.0 by a solid-state reaction between Li2CO3 and anatase TiO2 at 850?°C. All samples contain a small amount of transformed rutile TiO2 in the final Li4Ti5O12, where the amount of rutile TiO2 decreases with the increase in Li/Ti ratio. A stoichiometric Li4Ti5O12 with Li/Ti = 4.0/5.0 shows a slightly larger particle size and higher charge capacity than those of Li-deficient and Li-excessive particles, while the discharging rate capability is shown to mainly depend on particle size regardless of Li/Ti ratio. According to the time-resolved X-ray diffraction patterns using a synchrotron source, however, no significant difference is found in spite of the difference in Li/Ti ratio, indicating the structural stability of Li4Ti5O12 during the Li insertion and extraction process.  相似文献   

16.
Dongmei Wu 《Ionics》2012,18(6):559-564
Li4Ti5O12 anode was successfully synthesized by solid-state method. X-ray diffraction and scanning electron micrographs show that Li4Ti5O12 prepared by solid-state method has a purity phase with a uniform particle size in the range of 0.5?C1???m. Cyclic voltammogram reveals that there is a big irreversible capacity for the first cycle. Li4Ti5O12 shows a stable cycling stability at 1?C rate. After 152 cycles, the discharge capacity is 213?mAh?g?1, which keeps 93% of it at the second cycle. Electrochemical impedance spectroscopy shows that the resistance of charge-transfer of Li4Ti5O12 electrode decreased with increasing the storage temperatures, and the lithium diffusion coefficient is increased with increasing the storage temperatures, revealing that the kinetics of Li+ and electron transfer into the electrodes were much faster at high temperature than that at low temperature. The apparent activation energy of the charge transfer and lithium diffusion can be calculated to be 33.1 and 27.3?kJ?mol?1, respectively.  相似文献   

17.
N. Inoue  Y. Zou 《Ionics》2007,13(3):151-154
The chemical bonds and lithium diffusion of La4/3−y Li3y Ti2O6 (y = 0.21) were investigated by using the DV-Xα cluster method. The cluster model used is the formula La8Li2Ti2O11. A Li ion was moved on the ab plane at z = 1/2. The Na ion was moved along the x axis in the cluster model La8Na2Ti2O11 for comparison. The total bond overlap population (BOP) between the moving Li ion and the other ions was calculated on the ab plane at z = 1/2. The total BOP of the Li ion along the x axis increased near the oxygen ion site, whereas the BOP of the Na ion decreased. The decrease in total BOP indicates the decrease in covalent interaction between the Na and the other ions. The change of the net charge of the Li ion was almost the same as that of the Na ion. This suggests that the smaller change of covalent interaction in the mobile Li ion determines the diffusion path of Li ion.  相似文献   

18.
V. Thangadurai  W. Weppner 《Ionics》2003,9(3-4):308-314
The electrical conductivities of several perovskite-type lithium ion conductors in the Li-Sr-Nb-Ta-Ti-O system have been investigated. The Li+-ion conductivities of the Ta-compounds were found to be higher than those of the corresponding Nb-compounds, i.e., Li0.3Sr0.6Ta0.5Ti0.5O3 exhibits a bulk ionic conductivity of 1.7×10−4 S/cm at 30 °C, while Li0.3Sr0.6Nb0.5Ti0.5O3 shows a value of 5.4×10−6 S/cm at the same temperature. Substitution of Fe in Li0.3Sr0.6Ta0.5Ti0.5O3 decreases the Li+-ion conductivity slightly. The operation of a monolithic (single element) electrochromic devices was demonstrated using perovskite-type Li0.3Sr0.6B0.5Ti0.5O3 (B=Nb, Ta). The tantalum compound exhibited the largest coloration at the positive electrode side by the application of a voltage of 1.5 V and was bleached under short-circuit conditions at 350 °C. Paper presented at the 9th EuroConference on Ionics, Ixia, Rhodes, Greece, Sept. 15–21, 2002.  相似文献   

19.
K. Takada  S. Kondo 《Ionics》1998,4(1-2):42-47
Three kinds of coin-type battery, In-Lix / Li1−xCoO2, Li4/3+xTi5/3O4 / Li1−xCoO2, and Li2+xFeS2 / Li1−xCoO2, were fabricated with a Li+ ion conductive glass as an electrolyte, and their properties were investigated. They show excellent performance thanks to the solid electrolyte. Iron sulfide is found to be an excellent electrode material in solid state rechargeable batteries. Paper presented at the 5th Euroconference on Solid State Ionics, Benalmádena, Spain, Sept. 13–20, 1998.  相似文献   

20.
The use of graphene as a conductive additive to enhance the rate capability and cycle stability of Li4Ti5O12 electrode material has been demonstrated. Li4Ti5O12 and its composite with graphene (1.86 wt%) are prepared by ball milling and simple chemical method, respectively. Among the as-synthesized composites, Li4Ti5O12 particles uniformly clung to the graphene sheets. When used as an electrode material for lithium ion battery, the composite presents excellent rate performance and high cyclic stability. It is found that the composite displayed high-rate capacity of 118.7 mAh?g?1 at 20 C. Furthermore, the composite exhibits good cycle stability, retaining over 96 % of its initial capacity after 50 cycles at 10 C. The excellent electrochemical performance is attributed to a decrease in the charge-transfer resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号