首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study a vehicle routing problem with soft time windows and stochastic travel times. In this problem, we consider stochastic travel times to obtain routes which are both efficient and reliable. In our problem setting, soft time windows allow early and late servicing at customers by incurring some penalty costs. The objective is to minimize the sum of transportation costs and service costs. Transportation costs result from three elements which are the total distance traveled, the number of vehicles used and the total expected overtime of the drivers. Service costs are incurred for early and late arrivals; these correspond to time-window violations at the customers. We apply a column generation procedure to solve this problem. The master problem can be modeled as a classical set partitioning problem. The pricing subproblem, for each vehicle, corresponds to an elementary shortest path problem with resource constraints. To generate an integer solution, we embed our column generation procedure within a branch-and-price method. Computational results obtained by experimenting with well-known problem instances are reported.  相似文献   

2.
Recently, crossdocking techniques have been successfully applied in responsive supply chain management. However, most researches focused on physical layout of a crossdock, or scheduling operations within a crossdock. In this paper, we study a multi-crossdock transshipment service problem with both soft and hard time windows. The flows from suppliers to customers via the crossdocks are constrained by fixed transportation schedules. Cargos can be delayed and consolidated in crossdocks, and both suppliers and customers have specific hard time windows. In addition to hard time windows, customers also have less-restrictive time windows, called soft time windows. The problem to minimize the total cost of the multi-crossdock distribution network, including transportation cost, inventory handling cost and penalty cost, can be proved to be NP-hard in the strong sense and hence efficient heuristics are desired. We propose two types of meta-heuristic algorithms, called Adaptive Tabu Search and Adaptive Genetic Algorithm, respectively, to solve the problem efficiently. We conduct extensive experiments and the results show that both of them outperform CPLEX solver and provide fairly good solutions within realistic timescales. We also perform sensitivity analysis and obtain a number of managerial insights.  相似文献   

3.
The classical vehicle routing problem involves designing a set of routes for a fleet of vehicles based at one central depot that is required to serve a number of geographically dispersed customers, while minimizing the total travel distance or the total distribution cost. Each route originates and terminates at the central depot and customers demands are known. In many practical distribution problems, besides a hard time window associated with each customer, defining a time interval in which the customer should be served, managers establish multiple objectives to be considered, like avoiding underutilization of labor and vehicle capacity, while meeting the preferences of customers regarding the time of the day in which they would like to be served (soft time windows). This work investigates the use of goal programming to model these problems. To solve the model, an enumeration-followed-by-optimization approach is proposed which first computes feasible routes and then selects the set of best ones. Computational results show that this approach is adequate for medium-sized delivery problems.  相似文献   

4.
为了解决配送中心选址与带时间窗的多中心车辆路径优化组合决策问题,利用双层规划法建立了配送中心选址与车辆路径安排的多目标整数规划模型,针对该模型的特点,采用两阶段启发式算法进行了求解。首先,通过基于聚集度的启发式算法对客户进行分类,确定了备选配送中心的服务范围;然后,基于双层规划法,以配送中心选址成本最小作为上层规划目标,以车辆配送成本最小作为下层规划目标,建立了多目标整数规划模型;最后,利用改进的蚁群算法进行了求解。通过分析实例数据和Barreto Benchmark算例的实验结果,验证了该模型的有效性和可行性。  相似文献   

5.
We consider the problem of dispatching technicians to service/repair geographically distributed equipment. This problem can be cast as a vehicle routing problem with time windows, where customers expect fast response and small delays. Estimates of the service time, however, can be subject to a significant amount of uncertainty due to misdiagnosis of the reason for failure or surprises during repair. It is therefore crucial to develop routes for the technicians that would be less sensitive to substantial deviations from estimated service times. In this paper we propose a robust optimization model for the vehicle routing problem with soft time windows and service time uncertainty and solve real-world instances with a branch and price method. We evaluate the efficiency of the approach through computational experiments on real industry routing data.  相似文献   

6.
In this paper, we suggest a methodology to solve a cooperative transportation planning problem and to assess its performance. The problem is motivated by a real-world scenario found in the German food industry. Several manufacturers with same customers but complementary food products share their vehicle fleets to deliver their customers. After an appropriate decomposition of the entire problem into sub problems, we obtain a set of rich vehicle routing problems (VRPs) with time windows for the delivery of the orders, capacity constraints, maximum operating times for the vehicles, and outsourcing options. Each of the resulting sub problems is solved by a greedy heuristic that takes the distance of the locations of customers and the time window constraints into account. The greedy heuristic is improved by an appropriate Ant Colony System (ACS). The suggested heuristics to solve the problem are assessed within a dynamic and stochastic environment in a rolling horizon setting using discrete event simulation. We describe the used simulation infrastructure. The results of extensive simulation experiments based on randomly generated problem instances and scenarios are provided and discussed. We show that the cooperative setting outperforms the non-cooperative one.  相似文献   

7.
This paper proposes new proximity measures for assignment algorithms for the Multi-Depot Vehicle Routing Problem with Time Windows (MDVRPTW). Given the intrinsic difficulty of this problem class, two-step approximation methods of the type ‘cluster first, route second’ seem to be the most promising for practical size problems. The focus is on the clustering phase, the assignment of customers to depots. Our approach is to extend the existing metrics with time windows. New measures that include time windows and distances are added to two assignment heuristics, that previously only used distance to evaluate proximity between customers and depots. A computational study of their performance is presented, which shows that the inclusion of time windows in the measures of proximity gives better results, in terms of routing, than only using the distance.  相似文献   

8.
In this paper, we consider the open vehicle routing problem with time windows (OVRPTW). The OVRPTW seeks to find a set of non-depot returning vehicle routes, for a fleet of capacitated vehicles, to satisfy customers’ requirements, within fixed time intervals that represent the earliest and latest times during the day that customers’ service can take place. We formulate a comprehensive mathematical model to capture all aspects of the problem, and incorporate in the model all critical practical concerns. The model is solved using a greedy look-ahead route construction heuristic algorithm, which utilizes time windows related information via composite customer selection and route-insertion criteria. These criteria exploit the interrelationships between customers, introduced by time windows, that dictate the sequence in which vehicles must visit customers. Computational results on a set of benchmark problems from the literature provide very good results and indicate the applicability of the methodology in real-life routing applications.  相似文献   

9.
In this paper we consider the problem of physically distributing finished goods from a central facility to geographically dispersed customers, which pose daily demands for items produced in the facility and act as sales points for consumers. The management of the facility is responsible for satisfying all demand, and promises deliveries to the customers within fixed time intervals that represent the earliest and latest times during the day that a delivery can take place. We formulate a comprehensive mathematical model to capture all aspects of the problem, and incorporate in the model all critical practical concerns such as vehicle capacity, delivery time intervals and all relevant costs. The model, which is a case of the vehicle routing problem with time windows, is solved using a new heuristic technique. Our solution method, which is based upon Atkinson's greedy look-ahead heuristic, enhances traditional vehicle routing approaches, and provides surprisingly good performance results with respect to a set of standard test problems from the literature. The approach is used to determine the vehicle fleet size and the daily route of each vehicle in an industrial example from the food industry. This actual problem, with approximately two thousand customers, is presented and solved by our heuristic, using an interface to a Geographical Information System to determine inter-customer and depot–customer distances. The results indicate that the method is well suited for determining the required number of vehicles and the delivery schedules on a daily basis, in real life applications.  相似文献   

10.
The inland transportation takes a significant portion of the total cost that arises from intermodal transportation. In addition, there are many parties (shipping lines, haulage companies, customers) who share this operation as well as many restrictions that increase the complexity of this problem and make it NP-hard. Therefore, it is important to create an efficient strategy to manage this process in a way to ensure all parties are satisfied. This paper investigates the pairing of containers/orders in drayage transportation from the perspective of delivering paired containers on 40-ft truck and/or individual containers on 20-ft truck, between a single port and a list of customer locations. An assignment mixed integer linear programming model is formulated, which solves the problem of how to combine orders in delivery to save the total transportation cost when orders with both single and multiple destinations exist. In opposition to the traditional models relying on the vehicle routing problem with simultaneous pickups and deliveries and time windows formulation, this model falls into the assignment problem category which is more efficient to solve on large size instances. Another merit for the proposed model is that it can be implemented on different variants of the container drayage problem: import only, import–inland and import–inland–export. Results show that in all cases the pairing of containers yields less cost compared to the individual delivery and decreases empty tours. The proposed model can be solved to optimality efficiently (within half hour) for over 300 orders.  相似文献   

11.
This work proposes a scatter search (SS) approach to solve the fleet size and mix vehicle routing problem with time windows (FSMVRPTW). In the FSMVRPTW the customers need to be serviced in their time windows at minimal costs by a heterogeneous fleet. Computational results on 168 benchmark problems are reported. Computational testing revealed that our algorithm presented better results compared to other methods published in the literature.  相似文献   

12.
In the stochastic variant of the vehicle routing problem with time windows, known as the SVRPTW, travel times are assumed to be stochastic. In our chance-constrained approach to the problem, restrictions are placed on the probability that individual time window constraints are violated, while the objective remains based on traditional routing costs. In this paper, we propose a way to offer this probability, or service level, for all customers. Our approach carefully considers how to compute the start-service time and arrival time distributions for each customer. These distributions are used to create a feasibility check that can be “plugged” into any algorithm for the VRPTW and thus be used to solve large problems fairly quickly. Our computational experiments show how the solutions change for some well-known data sets across different levels of customer service, two travel time distributions, and several parameter settings.  相似文献   

13.
This work deals with a new combinatorial optimization problem, the two-dimensional loading capacitated vehicle routing problem with time windows which is a realistic extension of the well known vehicle routing problem. The studied problem consists in determining vehicle trips to deliver rectangular objects to a set of customers with known time windows, using a homogeneous fleet of vehicles, while ensuring a feasible loading of each vehicle used. Since it includes NP-hard routing and packing sub-problems, six heuristics are firstly designed to quickly compute good solutions for realistic instances. They are obtained by combining algorithms for the vehicle routing problem with time windows with heuristics for packing rectangles. Then, a Memetic algorithm is developed to improve the heuristic solutions. The quality and the efficiency of the proposed heuristics and metaheuristic are evaluated by adding time windows to a set of 144 instances with 15–255 customers and 15–786 items, designed by Iori et al. (Transport Sci 41:253–264, 2007) for the case without time windows.  相似文献   

14.
The vehicle routing problem with multiple use of vehicles is a variant of the classical vehicle routing problem. It arises when each vehicle performs several routes during the workday due to strict time limits on route duration (e.g., when perishable goods are transported). The routes are defined over customers with a revenue, a demand and a time window. Given a fixed-size fleet of vehicles, it might not be possible to serve all customers. Thus, the customers must be chosen based on their associated revenue minus the traveling cost to reach them. We introduce a branch-and-price approach to address this problem where lower bounds are computed by solving the linear programming relaxation of a set packing formulation, using column generation. The pricing subproblems are elementary shortest path problems with resource constraints. Computational results are reported on euclidean problems derived from well-known benchmark instances for the vehicle routing problem with time windows.  相似文献   

15.
The problem studied in this article arises from the distribution of soft drinks and collection of recyclable containers in a Quebec-based company. It can be modelled as a variant of the vehicle routing problem with a heterogeneous vehicle fleet, time windows, capacity and volume constraints, and an objective function combining routing costs and the revenue resulting from the sale of recyclable material. Three construction heuristics and an improvement procedure are developed for the problem. Comparative tests are performed on a real-life instance and on 10 randomly generated instances.  相似文献   

16.
研究了基于交通流的多模糊时间窗车辆路径问题,考虑了实际中不断变化的交通流以及客户具有多个模糊时间窗的情况,以最小化配送总成本和最大化客户满意度为目标,构建基于交通流的多模糊时间窗车辆路径模型。根据伊藤算法的基本原理,设计了求解该模型的改进伊藤算法,结合仿真算例进行了模拟计算,并与蚁群算法的计算结果进行了对比分析,结果表明,利用改进伊藤算法求解基于交通流的多模糊时间窗车辆路径问题,迭代次数小,效率更高,能够在较短的时间内收敛到全局最优解,可以有效的求解多模糊时间窗车辆路径问题。  相似文献   

17.
This paper considers the resource planning problem of a utility company that provides preventive maintenance services to a set of customers using a fleet of depot-based mobile gangs. The problem is to determine the boundaries of the geographic areas served by each depot, the list of customers visited each day and the routes followed by the gangs. The objective is to provide improved customer service at minimum operating cost subject to constraints on frequency of visits, service time requirements, customer preferences for visiting on particular days and other routing constraints. The problem is solved as a Multi-Depot Period Vehicle Routing Problem (MDPVRP). The computational implementation of the complete planning model is described with reference to a pilot study and results are presented. The solution algorithm is used to construct cost-service trade-off curves for all depots so that management can evaluate the impact of different customer service levels on total routing costs.  相似文献   

18.
This paper considers the routing of vehicles with limited capacity from a central depot to a set of geographically dispersed customers where actual demand is revealed only when the vehicle arrives at the customer. The solution to this vehicle routing problem with stochastic demand (VRPSD) involves the optimization of complete routing schedules with minimum travel distance, driver remuneration, and number of vehicles, subject to a number of constraints such as time windows and vehicle capacity. To solve such a multiobjective and multi-modal combinatorial optimization problem, this paper presents a multiobjective evolutionary algorithm that incorporates two VRPSD-specific heuristics for local exploitation and a route simulation method to evaluate the fitness of solutions. A new way of assessing the quality of solutions to the VRPSD on top of comparing their expected costs is also proposed. It is shown that the algorithm is capable of finding useful tradeoff solutions for the VRPSD and the solutions are robust to the stochastic nature of the problem. The developed algorithm is further validated on a few VRPSD instances adapted from Solomon’s vehicle routing problem with time windows (VRPTW) benchmark problems.  相似文献   

19.
This paper describes a novel tabu search heuristic for the multi-trip vehicle routing and scheduling problem (MTVRSP). The method was developed to tackle real distribution problems, taking into account most of the constraints that appear in practice. In the MTVRSP, besides the constraints that are common to the basic vehicle routing problem, the following ones are present: during each day a vehicle can make more than one trip; the customers impose delivery time windows; the vehicles have different capacities considered in terms of both volume and weight; the access to some customers is restricted to some vehicles; the drivers' schedules must respect the maximum legal driving time per day and the legal time breaks; the unloading times are considered.  相似文献   

20.
在绿色城市背景下,新能源汽车的数量快速增长,现有公共充电设施的不完善使得移动充电服务应运而生。投入运营成本较高而利润低成为阻碍移动充电业务运营的瓶颈之一,如何通过科学合理的调度提高平台利润成为重要问题。本文研究了移动充电车队的调度和路径优化问题,以平台最大收益为目标,综合考虑顾客软时间窗、移动电池容量以及充电车续航里程等约束,建立数学规划模型;设计了一种最大最小蚁群算法,并通过数值实验验证了模型的合理性和算法的有效性,为移动充电企业运营提供决策参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号