首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated solvent and rotational relaxation of coumarin 153 (C-153) in room-temperature ionic liquid (RTILs) 1-butyl-3-methyl-imidazolium tetrafluoroborate ([bmim][BF(4)]) and the ionic liquid confined in alkyl poly(oxyethylene glycol) ethers containing micelles. We have used octaethylene glycol monotetradecyl ether (C(14)E(8)) and octaethylene glycol monododecyl ether (C(12)E(8)) as surfactants. In the [bmim][BF(4)]-C(14)E(8) micelle, we have observed only a 22% increase in solvation time compared to neat [bmim][BF(4)], whereas in the [bmim][BF(4)]-C(12)E(8) system, we have observed approximately 57% increase in average solvation time due to micelle formation. However, the slowing down in solvation time on going from neat RTIL to RTIL-confined micelles is much smaller compared to that on going from water to water confined micellar aggregates. The 22-57% increase in solvation time is attributed to the slowing down of collective motions of cations and anions in micelles. The rotational relaxation times become faster in both the micelles compare to neat [bmim][BF(4)].  相似文献   

2.
The dynamics of solvent and rotational relaxation of Coumarin 480 and Coumarin 490 in glycerol containing bis-2-ethyl hexyl sulfosuccinate sodium salt (AOT) reverse micelles have been investigated with steady-state and time-resolved fluorescence spectroscopy. We observed slower solvent relaxation of glycerol confined in the nanocavity of AOT reverse micelles compared to that in pure glycerol. However, the slowing down in the solvation time on going from neat glycerol to glycerol confined reverse micelles is not comparable to that on going from pure water or acetonitrile to water or acetonitrile confined AOT reverse micellar aggregates. While solvent relaxation times were found to decrease with increasing glycerol content in the reverse micellar pool, rotational relaxation times were found to increase with increase in glycerol content.  相似文献   

3.
The solvent and rotational relaxation of Coumarin 153 (C-153) was investigated by picosecond time-resolved fluorescence spectroscopy in a room temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium octyl sulfate ([C4mim][C8SO4]). This is a typical RTIL, which form micellar structure above certain concentration of the RTIL (0.031 M). Dynamic light scattering (DLS) measurements show that the average hydrodynamic diameter ( Dh) of a [C4mim][C8SO4]-water micelle is 2.8 (+/-0.2) nm. Both the solvent and rotational relaxation of C-153 are retarded in this micelle compared to the solvation time of a similar type of dye in neat water. However, the solvent relaxation in this ionic liquid surfactant is different from that of a conventional ionic surfactant. The slow component of the solvation dynamics in C8H17SO4Na or TX-100 micelle is on the nanoseconds time scale, whereas in [C4mim][C8SO4] micelle the same component is on the subnanoseconds time scale. The different molecular motions with different time scale is the main reason behind this difference in the solvation time in micelles composed of RTIL with other conventional micelles.  相似文献   

4.
The dynamics of solvent relaxation in ionic liquid (IL)-water, IL-methanol, and IL-acetonitrile mixtures have been investigated using steady state and picosecond time-resolved fluorescence spectroscopy. We have used Coumarin 153 (C-153) and 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim][PF(6)]) as fluorescence probe and IL, respectively. The steady-state emission spectra showed that the gradual addition of cosolvents increases the polarity of the mixtures. In neat [hmim][PF(6)] and all IL-cosolvent mixtures, solvation occurs in two well-separated time regimes within the time resolution of our instrument. A substantial portion of the solvation has been missed due to the limited time resolution of our instrument. The gradual addition of cosolvents decreases the viscosity of the medium and consequently solvation time also decreases. The decrease in solvation time is more pronounced on addition of acetonitrile compared to water and methanol. The rotational relaxation time of the probe is also decreasing with gradual addition of the cosolvents. The decrease in viscosity of the solution is responsible for the decrease in the rotational relaxation time of the probe molecule.  相似文献   

5.
The interaction of ionic liquid with water in 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6])/Triton X-100 (TX-100)/H2O ternary microemulsions, i.e., "[bmim][PF6]-in-water" microregions of the microemulsions, has been studied by the dynamics of solvent and rotational relaxation of coumarin 153 (C-153) and coumarin 151 (C-151). The variation of the time constants of solvent relaxation of C-153 is very small with an increase in the [bmim][PF6]/TX-100 ratio (R). The rotational relaxation time of C-153 also remains unchanged in all micremulsions of different R values. The invariance of solvation and rotational relaxation times of C-153 indicates that the position of C-153 remains unaltered with an increase in R and probably the probe is located at the interfacial region of [bmim][PF6] and TX-100 in the microemulsions. On the other hand, in the case of C-151, with an increase in R the fast component of the solvation time gradually increases and the slow component gradually decreases, although the change in solvation time is small in comparison to that of microemulsions containing common polar solvents such as water, methanol, acetonitrile, etc. The rotational relaxation time of C-151 increases with an increase in R. This indicates that with an increase in the [bmim][PF6] content the number of C-151 molecules in the core of the microemulsions gradually increases. In general, the solvent relaxation time is retarded in this room temperature ionic liquid/water-containing microemulsion compared to that of a neat solvent, although retardation is very small compared to that of the solvent relaxation time of the conventional solvent in the core of the microemulsions.  相似文献   

6.
Dynamic Stokes' shift measurements using coumarin 153 as the fluorescence probe have been carried out to study solvation dynamics in two nonionic micelles, viz., triton-X-100 (TX-100) and triton-X-165 (TX-165). In both the micelles, the solvent relaxation dynamics is biexponential in nature. While the fast solvation time tau(s1) is seen to be almost similar for both the micelles, the slow solvation time tau(s2) is found to be appreciably smaller in TX-165 than in TX-100 micelle. Dynamic light scattering measurements indicate that the TX-165 micelles are substantially smaller in size than that of TX-100. Assuming similar core size for both the micelles, as expected from the similar chemical structures of the nonpolar ends for both the surfactants, the Palisade layer is also indicated to be substantially thinner for TX-165 micelles than that of TX-100. The aggregation number of TX-165 micelles is also found to be substantially smaller than that of TX-100 micelles. Fluorescence spectral studies of C153 dye in the two micelles indicate that the Palisade layer of TX-165 micelles is more polar than that of TX-100 micelles. Fluorescence anisotropy measurements indicate that the microviscosity in the Palisade layer of TX-165 micelles is also lower than that of TX-100 micelles. Based on these results it is inferred that the structure of the Palisade layer of TX-165 micelles is quite loose and have higher degree hydration in comparison to that of TX-100 micelles. Due to these structural differences in the Palisade layers of TX-165 and TX-100 micelles the solvation dynamics is faster in the former micelles than in the latter. It has been further inferred that in the present systems the collective response of the water molecules at somewhat away from the probes is responsible for the faster component of the solvation time, which does not reflect much of the structural changes of the micellar Palisade layer. On the contrary, the slower solvation time component, which is mainly due to the single particle response arising from water molecules adjacent to the probe in the micellar Palisade layer, is largely affected by the structural changes in the micellar Palisade layer.  相似文献   

7.
The effects of confinement of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate on solvation dynamics and rotational relaxation of Coumarin 153 (C-153) in Triton X-100/cyclohexane microemulsions have been explored using steady-state and picosecond time-resolved emission spectroscopy. The steady-state and rotational relaxation data indicate that C-153 molecules are incorporated in the core of the microemulsions. The average rotational relaxation time increases with increase in w ([bmim][BF(4)]/[TX-100]) values. The solvent relaxation in the core of the microemulsion occurs on two different time scales and is almost insensitive to the increase in w values. The solvent relaxation is retarded in the pool of the microemulsions compared to the neat solvent. Though, the retardation is very small compared to several-fold retardation of the solvation time of the conventional solvent inside the pool of the microemulsions.  相似文献   

8.
The effect of alkyl chain length and size of the headgroups of the surfactant on the solvation dynamics and rotational relaxation of Coumarin 480 (C-480) has been investigated using dynamic Stokes' shift of C-480 in different types of alkyltrimethylammonium bromide micelles and mixed micelles. The rotational relaxation time increases with increase in alkyl chain length of the surfactant. The increase in the number of alkyl chains of the surfactant leads to the more close packed micelles, hence the microviscosity of the micelles increases and consequently rotational relaxation time increases. Solvation time also increases due to the increase in number of alkyl chains of the surfactant. The change in solvation and rotational relaxation time is more prominent in micelles compared to mixed micelles. The solvation and rotational relaxation time also increase with the increase in size of the headgroup of the surfactant.  相似文献   

9.
The transport properties and solvation dynamics of model 1,3-dialkylimidazolium chloride melt at 425 K is studied using molecular-dynamics simulations. Long trajectories of a large system have been generated and quantities such as the self-diffusion coefficient of ions, shear viscosity, and ionic conductivity have been calculated. Interestingly, the diffusion of the heavier cation is found to be faster than the anion, in agreement with experiment. The interaction model is found to predict a higher viscosity and lower electrical conductivity compared to experimental estimates. Analysis of the latter calculations points to correlated ion motions in this melt. The solvation time correlation function for dipolar and ionic probes studied using equilibrium simulations exhibits three time components, which include an ultrafast (subpicosecond) part as well as one with a time constant of around 150 ps. The ultrafast solvent relaxation is ascribed to the rattling of anions in their cage, while the slow component could be related to the reorientation of the cations as well as to ion diffusion.  相似文献   

10.
Dynamic fluorescence Stokes shift measurements of coumarin 153 (C153) have been carried out to study the influence of ionic surfactants (sodium dodecyl sulfate, SDS and hexadecyltrimethylammonium chloride, CTAC) on the hydration behavior of aqueous poly(ethylene oxide)(20)-poly(propylene oxide)(70)-poly(ethylene oxide)20 (P123) block copolymer micelles. Increase in SDS or CTAC concentration at a fixed P123 concentration induces the steady-state emission spectra of C153 to shift gradually toward lower energy. This is attributed to an increase in polarity (due to enhanced hydration) experienced by the probe as a consequence of incorporation of ionic head groups in the Corona region. The observed dynamic fluorescence Stokes shift value decreases more in mixed micellar systems than in pure copolymer micelles and the trends are quite similar in the presence of SDS and CTAC. The spectral shift correlation functions were observed to be nonexponential in nature. Critical analysis of the spectral shift correlation function indicates a fast solvation component (<0.2 ns) in P123 micelles, which was absent in the presence of ionic surfactants. Due to increased hydration in the presence of ionic surfactants, the initial fast solvation event was elusive in mixed copolymer-surfactant systems, reflecting the absence of faster solvation component and reduced observed Stokes shift in mixed systems. It has been argued that in the low surfactant concentration region, increase in hydration with the incorporation of ionic head groups in the Corona region is mainly due to increase in mechanically trapped water content. However, at higher surfactant concentrations, bound water content dominates and leads to slower solvation dynamics. The present results also indicate that though CTAC alters the Corona hydration more efficiently than SDS, the overall influence of ionic surfactants on the Corona hydration is grossly similar irrespective of the cationic or anionic nature of the surfactants. Interaction of SDS and CTAC with poly(ethylene oxide)(100)-poly(propylene oxide)(70)-poly(ethylene oxide)(100) (F127) block copolymer micelles has also been studied to comprehend the effect of copolymer composition. The overall trends in dynamic fluorescence Stokes shift and solvation times are similar in both the copolymer micelles.  相似文献   

11.
We have measured the dynamics of solvation of a triplet state probe, quinoxaline, in the glass-forming ionic liquid dibutylammonium formate near its glass transition temperature Tg=153 K. The Stokes-shift correlation function displays a relaxation time dispersion of considerable magnitude and the optical line width changes systematically along the solvation coordinate. The solvent dynamics in the viscous regime is compared with the rotational behavior of the solute and with the dielectric relaxation of the ionic liquid. Among the different quantities derived from the dielectric experiments, the relaxation of the macroscopic electric field, i.e., the modulus Mt, matches best the solvent response Ct regarding time scale and stretching exponent. Many other properties are reminiscent of the behavior of polar molecular liquids which lack the ionic character.  相似文献   

12.
Molecular dynamics simulations of mixtures of 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM+][PF6-]) and water have been performed in order to investigate how small amounts of water affect the translational and rotational dynamics of this ionic liquid (IL). We find that water is closely associated with the anions and that its presence enhances both the translational and rotational dynamics of the IL. In agreement with experiments, we find that the fluorescence spectra of Coumarin-153 is red-shifted because of the presence of water. Small amounts of water enhance the speed of relaxation of the solvent surrounding the solute probe after photoexcitation, but only at a "local environment" level. Interconversion between environments still occurs on a long time scale compared with the fluorescence lifetime of the probe. Excitation wavelength-dependent emission is observed both in the neat IL and in the IL+water mixture.  相似文献   

13.
Steady‐state and time‐resolved fluorescence behavior of coumarin 153 (C153) is investigated in a series of 1‐ethyl‐3‐methylimidazolium alkylsulfate ([C2mim][CnOSO3]) ionic liquids differing only in the length of the linear alkyl chain (n=4, 6, and 8) in the anion. The aim of the present study is to understand the role of alkyl chain length in solute rotation and solvation dynamics of C153 in these ionic liquids. The blueshift observed in the steady‐state absorption and emission maxima of C153 on going from the C4OSO3 to the C8OSO3 system indicates increasing nonpolar character of the microenvironment of the solute with increasing length of the alkyl side chain of the anion of the ionic liquids. The average solvation time is also found to increase on changing the substituent from butyl to octyl, and this is attributed to the increase in the bulk viscosity of the ILs. A steady blueshift of the time‐zero maximum of the fluorescence spectrum with increasing alkyl chain length also indicates that the probe molecule experiences a less polar environment in the early part of the dynamics. Rotational dynamics of C153 are also analyzed by using the Stokes–Einstein–Debye (SED), Gierer–Wirtz (GW), and Dote–Kivelson–Schwartz (DKS) theories. Analyses of the results seem to suggest decoupling of the rotational motion of the probe from solvent viscosity.  相似文献   

14.
Dielectric relaxation of aqueous solutions of micelles, proteins, and many complex systems shows an anomalous dispersion at frequencies intermediate between those corresponding to the rotational motion of bulk water and that of the organized assembly or macromolecule. The precise origin of this anomalous dispersion is not well-understood. In this work we employ large scale atomistic molecular dynamics simulations to investigate the dielectric relaxation (DR) of water molecules in an aqueous micellar solution of cesium pentadecafluorooctanoate. The simulations clearly show the presence of a slow component in the moment-moment time correlation function [PhiMW(t)] of water molecules, with a time constant of about 40 ps, in contrast to only 9 ps for bulk water. Interestingly, the orientational time correlation function [Cmu(t)] of individual water molecules at the surface exhibits a component with a time constant of about 19 ps. We show that these two time constants can be related by the well-known micro-macrorelations of statistical mechanics. In addition, the reorientation of surface water molecules exhibits a very slow component that decays with a time constant of about 500 ps. An analysis of hydrogen bond lifetime and of the rotational relaxation in the coordinate frame fixed on the micellar body seems to suggest that the 500 ps component owes its origin to the existence of an extended hydrogen bond network of water molecules at the surface. However, this ultraslow component is not found in the total moment-moment time correlation function of water molecules in the solution. The slow DR of hydration water is found to be well correlated with the slow solvation dynamics of cesium ions at the water-micelle interface.  相似文献   

15.
The interaction of water with room temperature ionic liquid (RTIL) [bmim][PF6] has been studied in [bmim][PF6]/TX-100/water ternary microemulsions by solvent and rotational relaxation of coumarin 153 (C-153) and coumarin 490 (C-490). The rotational relaxation and average solvation time of C-153 and C-490 gradually decrease with increase in water content of the microemulsions. The gradual increase in the size of the microemulsion with increase in w0 (w0=[water]/[surfactant]) is evident from dynamic light scattering measurements. Consequently the mobility of the water molecules also increases. In comparison to pure water the retardation of solvation time in the RTIL containing ternary microemulsions is very less. The authors have also reported the solvation time of C-490 in neat [bmim][PF6]. The solvation time of C-490 in neat [bmim][PF6] is bimodal with time constants of 400 ps and 1.10 ns.  相似文献   

16.
While the imidazolium ionic liquids have been studied for some time, little is known about the pyrrolidinium ionic liquids. In this work, steady-state and picosecond time-resolved fluorescence behavior of three electron donor-acceptor molecules, coumarin-153 (C153), 4-aminophthalimide (AP), and 6-propionyl-2-dimethylaminonaphthalene (PRODAN), has been studied in a pyrrolidinium ionic liquid, N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, abbreviated here as [bmpy][Tf2N]. The steady-state fluorescence data of the systems suggest that the microenvironment around these probe molecules, which is measured in terms of the solvent polarity parameter, E(T)(30), is similar to that in 1-decanol and that the polarity of this ionic liquid is comparable to that of the imidazolium ionic liquids. All three systems exhibit wavelength-dependent fluorescence decay behavior, and the time-resolved fluorescence spectra show a progressive shift of the fluorescence maximum toward the longer wavelength with time. This behavior is attributed to solvent-mediated relaxation of the fluorescent state of these systems. The dynamics of solvation, which is studied from the time-dependent shift of the fluorescence spectra, suggests that approximately 45% of the relaxation is too rapid to be measured in the present setup having a time resolution of 25 ps. The remaining observable components of the dynamics consist of a short component of 115-440 ps (with smaller amplitude) and a long component of 610-1395 ps (with higher amplitude). The average solvation time is consistent with the viscosity of this ionic liquid. The dynamics of solvation is dependent on the probe molecule, and nearly 2-fold variation of the solvation time depending on the probe molecule could be observed. No correlation of the solvation time with the probe molecule could, however, be observed.  相似文献   

17.
Steady-state and time-resolved emission spectroscopy with 25 ps resolution are used to measure equilibrium and dynamic aspects of the solvation of coumarin 153 (C153) in a diverse collection of 21 room-temperature ionic liquids. The ionic liquids studied here include several phosphonium and imidazolium liquids previously reported as well as 12 new ionic liquids that incorporate two homologous series of ammonium and pyrrolidinium cations. Steady-state absorption and emission spectra are used to extract solvation free energies and reorganization energies associated with the S0 <--> S1 transition of C153. These quantities, especially the solvation free energy, vary relatively little in ionic liquids compared to conventional solvents. Some correlation is found between these quantities and the mean separation between ions (or molar volume). Time-resolved anisotropies are used to observe solute rotation. Rotation times measured in ionic liquids correlate with solvent viscosity in much the same way that they do in conventional polar solvents. No special frictional coupling between the C153 and the ionic liquid solvents is indicated by these times. But, in contrast to what is observed in most low-viscosity conventional solvents, rotational correlation functions in ionic liquids are nonexponential. Time-resolved Stokes shift measurements are used to characterize solvation dynamics. The solvation response functions in ionic liquids are also nonexponential and can be reasonably represented by stretched-exponential functions of time. The solvation times observed are correlated with the solvent viscosity, and the much slower solvation in ionic liquids compared to dipolar solvents can be attributed to their much larger viscosities. Solvation times of the majority of ionic liquids studied appear to follow a single correlation with solvent viscosity. Only liquids incorporating the largest phosphonium cation appear to follow a distinctly different correlation.  相似文献   

18.
Importance of micellar kinetics in relation to technological processes   总被引:5,自引:0,他引:5  
The association of many classes of surface-active molecules into micellar aggregates is a well-known phenomenon. Micelles are in dynamic equilibrium, constantly disintegrating and reforming. This relaxation process is characterized by the slow micellar relaxation time constant, tau(2), which is directly related to the micellar stability. Theories of the kinetics of micelle formation and disintegration have been discussed to identify the gaps in our complete understanding of this kinetic process. The micellar stability of sodium dodecyl sulfate micelles has been shown to significantly influence technological processes involving a rapid increase in interfacial area, such as foaming, wetting, emulsification, solubilization, and detergency. First, the available monomers adsorb onto the freshly created interface. Then, additional monomers must be provided by the breakup of micelles. Especially when the free monomer concentration is low, which is the case for many nonionic surfactant solutions, the micellar breakup time is a rate-limiting step in the supply of monomers. The Center for Surface Science & Engineering at the University of Florida has developed methods using stopped flow and pressure jump with optical detection to determine the slow relaxation time of micelles of nonionic surfactants. The results showed that the ionic surfactants such as SDS exhibit slow relaxation times in the range from milliseconds to seconds, whereas nonionic surfactants exhibit slow relaxation times in the range from seconds (for Triton X-100) to minutes (for polyoxyethylene alkyl ethers). The slow relaxation times are much longer for nonionic surfactants than for ionic surfactants, because of the absence of ionic repulsion between the head groups. The observed relaxation times showed a direct correlation with dynamic surface tension and foaming experiments. In conclusion, relaxation time data of surfactant solutions correlate with the dynamic properties of the micellar solutions. Moreover, the results suggest that appropriate micelles with specific stability or tau(2) can be designed by controlling the surfactant structure, concentration, and physicochemical conditions (e.g., salt concentration, temperature, and pressure). One can also tailor micelles by mixing anionic/cationic or ionic/nonionic surfactants for a desired stability to control various technological processes.  相似文献   

19.
The structure and dynamics of a catanionic vesicle are studied by means of femtosecond up‐conversion and dynamic light scattering (DLS). The catanionic vesicle is composed of dodecyl‐trimethyl‐ammonium bromide (DTAB) and sodium dodecyl sulphate (SDS). The DLS data suggest that 90 % of the vesicles have a diameter of about 400 nm, whereas the diameter of the other 10 % is about 50 nm. The dynamics in the catanionic vesicle are compared with those in pure SDS and DTAB micelles. We also study the dynamics in different regions of the micelle/vesicle by varying the excitation wavelength (λex) from 375 to 435 nm. The catanionic vesicle is found to be more heterogeneous than the SDS or DTAB micelles, and hence, the λex‐dependent variation of the solvation dynamics is more prominent in the first case. The solvation dynamics in the vesicle and the micelles display an ultraslow component (2 and 300 ps, respectively), which arises from the quasibound, confined water inside the micelle, and an ultrafast component (<0.3 ps), which is due to quasifree water at the surface/exposed region. With an increase in λex, the solvation dynamics become faster. This is manifested in a decrease in the total dynamic solvent shift and an increase in the contribution of the ultrafast component (<0.3 ps). At a long λex (435 nm), the surface (exposed region) of a micelle/vesicle is probed, where the solvation dynamics of the water molecules are faster than those in a buried location of the vesicle and the micelles. The time constant of anisotropy decay becomes longer with increasing λex, in both the catanionic vesicle and the ordinary micelles (SDS and DTAB). The slow rotational dynamics (anisotropy decay) in the polar region (at long λex) may be due to the presence of ionic head groups and counter ions.  相似文献   

20.
Recognizing the potential of the mixed solvent systems comprising ionic liquid as one of the constituents in real applications, the steady-state and time-resolved fluorescence behavior of C153 has been studied in neat 1-butyl-3-methylimidazolium hexafluorophosphate and its mixtures with nonpolar solvents, namely, toluene and 1,4-dioxane. No significant effect of the cosolvent on the steady-state absorption or fluorescence spectra of C153 in ionic liquid has been observed. Time-resolved fluorescence anisotropy measurements show a decrease of the rotational correlation time of C153 with gradual addition of the cosolvent. Solvation dynamics in ionic liquid-cosolvent mixtures is found to be biphasic, and a decrease of the average solvation time is observed with increasing amount of the cosolvent in solution. The time-zero spectrum of C153 is found to shift toward higher energy with gradual addition of the nonpolar solvent, suggesting that the probe molecule experiences a more nonpolar environment at the early stage of the dynamics in mixed solvents. The blue shift of the time-zero spectrum caused by the addition of the nonpolar solvent results in a larger Stokes shift of the time-dependent spectra due to solvent relaxation in mixed solvents. A comparison of the time-dependent spectral data of the ionic liquid-toluene and ionic liquid-dioxane systems shows that, while a small amount of toluene can significantly affect the dynamics, comparatively, a larger amount of dioxane is required to bring about the same effect. This is explained in terms of favorable interactions between toluene and the imidazolium ring system leading to a more effective solubilization of toluene in the cybotactic region of the probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号